The Minibrain (Mnb) gene belongs to a new protein kinase family, which is evolutionarily conserved, and probably plays several roles during brain development and in adulthood. In Drosophila, mnb is involved in postembryonic neurogenesis and in learning/memory. In humans, MNB has been mapped within the Down syndrome critical region of chromosome 21 and is overexpressed in the Down syndrome embryonic brain. It has been widely proposed that MNB is involved in the neurobiological alterations associated with Down syndrome. Nevertheless, little is known about the functional role that MNB plays in vertebrate brain development. We have recently shown [Hämmerle et al. (2002) Dev. Biol., 246, 259-273] that in early vertebrate embryos, Mnb is transiently expressed in neural progenitor cells during the transition from proliferating to neurogenic divisions. Here we have studied in detail a second wave of Mnb expression, which takes place in the brain of intermediate and late vertebrate embryos. In these stages, MNB seems to be restricted to certain populations of neurons, as no consistent expression was detected in astroglial or oligodendroglial cells. Interestingly, MNB expression takes place at the time of dendritic tree differentiation and is initiated by a transient translocation from the cytoplasm to the nucleus. Afterwards, MNB protein is transported to the growing dendritic tree, where it colocalizes with Dynamin 1, a putative substrate of MNB kinases. We propose that MNB kinase is involved in the signalling mechanisms that regulate dendrite differentiation. This functional role helps to build a new hypothesis for the implication of MNB/DYRK1A in the developmental aetiology of Down syndrome neuropathologies.
The phylogenetic placements of several African endemic genera at the base of Apiaceae subfamilies Saniculoideae and Apioideae have revolutionized ideas of relationships that affect hypotheses of character evolution and biogeography. Using an explicit phylogeny of subfamily Saniculoideae, we reconstructed the evolutionary history of phenotypic characters traditionally important in classification, identified those characters most useful in supporting relationships, and inferred historical biogeography. The 23 characters examined include those of life history, vegetative morphology, inflorescences, and fruit morphology and anatomy. These characters were optimized over trees derived from maximum parsimony analysis of chloroplast DNA trnQ-trnK sequences from 94 accessions of Apiaceae. The results revealed that many of these characters have undergone considerable modification and that traditional assumptions regarding character-state polarity are often incorrect. Infrasubfamilial relationships inferred by molecular data are supported by one to five morphological characters. However, none of these morphological characters support the monophyly of subfamilies Saniculoideae or Apioideae, the clade of Petagnaea, Eryngium and Sanicula, or the sister-group relationship between Eryngium and Sanicula . Southern African origins of Saniculoideae and of its tribes Steganotaenieae and Saniculeae are supported based on dispersal-vicariance analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.