Cattle are an important reservoir of Escherichia coli O157:H7 leading to contamination of food and water, and subsequent human disease. This pathogen colonizes its hosts by producing several proteins such as Tir and EspA that are secreted by a type III secretion system. These proteins play a role in colonization of the intestine, suggesting that they might be useful targets for the development of a vaccine to reduce levels of this organism in cattle. Vaccination of cattle with proteins secreted by E. coli O157:H7 significantly reduced the numbers of bacteria shed in feces, the numbers of animals that shed, and the duration of shedding in an experimental challenge model. Vaccination of cattle also significantly (P=0.04) reduced the prevalence of E. coli O157:H7 in a clinical trial conducted in a typical feedlot setting. This strategy suggests it is possible to vaccinate cattle to decrease the level of E. coli O157:H7 shedding for the purpose of reducing the risk of human disease.
A 2-year study was conducted during the summer months (May to September) to test the effectiveness of feeding Lactobacillus acidophilus strain NP51 on the proportion of cattle shedding Escherichia coli O157:H7 in the feces and evaluate the effect of the treatment on finishing performance. Steers (n = 448) were assigned randomly to pens, and pens of cattle were assigned randomly to NP51 supplementation or no supplementation (control). NP51 products were mixed with water and applied as the feed was mixed daily in treatment-designated trucks at the rate of 10(9) CFU per steer. Fecal samples were collected (n = 3,360) from the rectum from each animal every 3 weeks, and E. coli O157:H7 was isolated by standard procedures, using selective enrichment, immunomagnetic separation, and PCR confirmation. The outcome variable was the recovery of E. coli O157:H7 from feces, and was modeled using logistic regression accounting for year, repeated measures of pens of cattle, and block. No significant differences were detected for gain, intakes, or feed efficiency of control or NP51-fed steers. The probability for cattle to shed E. coli O157:H7 varied significantly between 2002 and 2003 (P = 0.004). In 2002 and 2003, the probability for NP51-treated steers to shed E. coli O157:H7 over the test periods was 13 and 21%, respectively, compared with 21 and 28% among controls. Over the 2 years, NP51-treated steers were 35% less likely to shed E. coli O157: H7 than were steers in untreated pens (odds ratio = 0.58, P = 0.008). This study is consistent with previous reports that feeding NP51 is effective in reducing E. coli O157:H7 fecal shedding in feedlot cattle.
The objective was to describe variability in prevalence, incidence, and duration of fecal shedding of naturally occurring E. coli O157:H7 by a group of feedlot cattle over time. One hundred steers, randomly assigned to 10 pens, were fed a high-concentrate finishing diet for 136 days (19 weeks). Rectal feces from each animal were tested for E. coli O157:H7 every week for 19 weeks. E. coli O157:H7 was recovered from each animal that completed the study and was detected from at least one animal every week. Average pen prevalence of cattle shedding E. coli O157:H7 varied significantly over time (P < 0.0001) and across pens (P < 0.0001), ranging from 1 to 80%. Pairwise comparisons of mean pen prevalence of E. coli O157:H7 between weeks and estimation of the predicted probability of an incident case of E. coli O157:H7 over time allowed the definition of three distinct phases--namely, the preepidemic, epidemic, and postepidemic periods. Average pen prevalence varied significantly over time (P < 0.01) and across pens (P < 0.001) for all time periods. The odds of an incident case were significantly greater during epidemic and postepidemic periods relative to the preepidemic period (P = 0.0002 and P = 0.03, respectively). Duration of infection was significantly longer for first or second infections that began during epidemic or postepidemic periods relative to the preepidemic period (P < 0.001). Both incidence and duration of shedding peaked during the epidemic period. Pen-level prevalence of cattle shedding E. coli O157:H7 was affected by both incidence and duration of shedding and could be explained by time- or pen-dependent risk factors, or both.
The objectives of this study were to identify the mechanism(s) of pseudorabies virus (PrV)-induced down-regulation of porcine class I molecules and the viral protein(s) responsible for the effect. The ability of PrV to interfere with the peptide transport activity of TAP was determined by an in vitro transport assay. In this assay, porcine kidney (PK-15) cells were permeabilized with streptolysin-O and incubated with a library of 125I-labeled peptides having consensus motifs for glycosylation in the endoplasmic reticulum (ER). The efficiency of transport of peptides from the cytosol into the ER was determined by adsorbing the ER-glycosylated peptides onto Con A-coupled Sepharose beads. Dose-dependent inhibition of TAP activity was observed in PrV-infected PK-15 cells. This inhibition, which occurred as early as 2 h postinfection (h.p.i.), reached the maximum level by 6 h.p.i., indicating that TAP inhibition is one of the mechanisms by which PrV down-regulates porcine class I molecules. Infection of cells with PrV in the presence of metabolic inhibitors revealed that cycloheximide a protein synthesis inhibitor, but not phosphonoacetic acid a herpesvirus DNA synthesis inhibitor, could restore the cell surface expression of class I molecules, indicating that late proteins are not responsible for the down-regulation. Infection in the presence of cycloheximide followed by actinomycin-D, which results in accumulation of the immediate-early protein, failed to down-regulate class I, indicating that one or more early proteins are responsible for the down-regulation of class I molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.