Acute spinal cord injury (SCI) causes systemic immunosuppression and life-threatening infections, thought to result from noradrenergic overactivation and excess glucocorticoid release via hypothalamus-pituitary-adrenal axis stimulation. Instead of consecutive hypothalamus-pituitary-adrenal axis activation, we report that acute SCI in mice induced suppression of serum norepinephrine and concomitant increase in cortisol, despite suppressed adrenocorticotropic hormone, indicating primary (adrenal) hypercortisolism. This neurogenic effect was more pronounced after high-thoracic level (Th1) SCI disconnecting adrenal gland innervation, compared with low-thoracic level (Th9) SCI. Prophylactic adrenalectomy completely prevented SCI-induced glucocorticoid excess and lymphocyte depletion but did not prevent pneumonia. When adrenalectomized mice were transplanted with denervated adrenal glands to restore physiologic glucocorticoid levels, the animals were completely protected from pneumonia. These findings identify a maladaptive sympathetic-neuroendocrine adrenal reflex mediating immunosuppression after SCI, implying that therapeutic normalization of the glucocorticoid and catecholamine imbalance in SCI patients could be a strategy to prevent detrimental infections.
Rapp et al. demonstrate that dendritic cells in the lymph node secrete CCL22 to build cell–cell contacts with CCR4-expressing regulatory T cells, leading to immune suppression. Conversely, CCL22 deficiency results in enhanced T cell immunity, shown here in the setting of vaccination, cancer, and inflammatory disease.
Chemokines are known to regulate the steady-state and inflammatory migration of cutaneous dendritic cells (DCs). The β-chemokine CCL17, a ligand of CCR4, is inducibly expressed in a subset of DCs and is strongly up-regulated in atopic diseases. Using an atopic dermatitis model, we show that CCL17-deficient mice develop acanthosis as WT mice, whereas dermal inflammation, T helper 2-type cytokine production, and the allergen-specific humoral immune response are significantly decreased. Notably, CCL17-deficient mice retained Langerhans cells (LCs) in the lesional skin after chronic allergen exposure, whereas most LCs emigrated from the epidermis of allergen-treated WT controls into draining lymph nodes (LNs). Moreover, CCL17-deficient LCs showed impaired emigration from the skin after exposure to a contact sensitizer. In contrast, the absence of CCR4 had no effect on cutaneous DC migration and development of atopic dermatitis symptoms. As an explanation for the major migratory defect of CCL17-deficient DCs in vivo, we demonstrate impaired mobility of CCL17-deficient DCs to CCL19/21 in 3D in vitro migration assays and a blockade of intracellular calcium release in response to CCR7 ligands. In addition, responsiveness of CCL17-deficient DCs to CXCL12 was impaired as well. We demonstrate that the inducible chemokine CCL17 sensitizes DCs for CCR7-and CXCR4-dependent migration to LN-associated homeostatic chemokines under inflammatory conditions and thus plays an important role in cutaneous DC migration.atopic dermatitis | CCL22 | CCR4 | GPCR | Langerhans cells
Summary T cells are activated by antigen (Ag) bearing dendritic cells (DCs) in lymph nodes in 3 phases. The duration of the initial phase of transient, serial DC-T cell interactions is inversely correlated with Ag dose. The second phase, characterized by stable DC-T cell contacts, is believed to be necessary for full-fledged T cell activation. Here we have shown that this is not the case. CD8+ T cells interacting with DCs presenting low-dose, short-lived Ag did not transition to phase 2, while higher Ag dose yielded phase 2 transition. Both antigenic constellations promoted T cell proliferation and effector differentiation, but yielded different transcriptome signatures at 12h and 24h. T cells that experienced phase 2 developed long-lived memory, whereas conditions without stable contacts yielded immunological amnesia. Thus, T cells make fate decisions within hours after Ag exposure resulting in long-term memory or abortive effector responses, correlating with T cell-DCs interaction kinetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.