The aim of this work was to investigate the structure-property relationships of two different monocotyledon trunks: bamboo (Bambusa blumeana Schultes) and oil palm (Elaeis guineensis Jacq). Anatomical characteristics (fraction of fibers) and physical (density, water uptake, and swelling in the radial direction) and mechanical (modulus of rupture and modulus of elasticity) properties of bamboo and oil palm trunks were examined. The results showed that the examined properties of both species were mainly governed by fibers. Those of bamboo were mostly greater. Functions relating most of the examined properties to the density of both species were finally achieved. Based on the results obtained, it is suggested that bamboo has a higher potential for structural application, while oil palm wood is more likely to be utilized for non-structural purposes.
Since the structure of oil palm wood varies dramatically, the property gradients of oil palm wood within a trunk are of great interest. In this study, the physical (density, water uptake and swelling in the radial direction) and mechanical properties (bending modulus of elasticity and strength, compressive modulus of elasticity and strength in the direction parallel to the fiber, compressive strength in the direction perpendicular to the fiber and shear strength in the direction parallel to the fiber) of oil palm wood for a whole trunk were examined. The water uptake, compressive strength in the direction perpendicular to the fiber, shear strength in the direction parallel to the fiber, bending modulus of elasticity and strength and compressive modulus of elasticity and strength in the direction parallel to the fiber appeared to be independent of trunk height but tended to be related to the relative distance from surface or density by a single master curve. However, the swelling in the radial direction of the oil palm wood was not correlated with the relative distance from the surface, trunk height or density. Finally, property map of oil palm wood for a cross section at any height was prepared for practical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.