Context. Interferometric observations of the Sun with the Atacama Large Millimeter/sub-millimeter Array (ALMA) provide valuable diagnostic tools for studying the small-scale dynamics of the solar atmosphere. Aims. The aims are to perform estimations of the observability of the small-scale dynamics as a function of spatial resolution for regions with different characteristic magnetic field topology facilitate a more robust analysis of ALMA observations of the Sun. Methods. A three-dimensional model of the solar atmosphere from the radiation-magnetohydrodynamic code Bifrost was used to produce high-cadence observables at millimeter and submillimeter wavelengths. The synthetic observables for receiver bands 3–10 were degraded to the angular resolution corresponding to ALMA observations with different configurations of the interferometric array from the most compact, C1, to the more extended, C7. The observability of the small-scale dynamics was analyzed in each case. The analysis was thus also performed for receiver bands and resolutions that are not commissioned so far for solar observations as a means for predicting the potential of future capabilities. Results. The minimum resolution required to study the typical small spatial scales in the solar chromosphere depends on the characteristic properties of the target region. Here, a range from quiet Sun to enhanced network loops is considered. Limited spatial resolution affects the observable signatures of dynamic small-scale brightening events in the form of reduced brightness temperature amplitudes, potentially leaving them undetectable, and even shifts in the times at which the peaks occur of up to tens of seconds. Conversion factors between the observable brightness amplitude and the original amplitude in the fully resolved simulation are provided that can be applied to observational data in principle, but are subject to wavelength-dependent uncertainties. Predictions of the typical appearance at the different combinations of receiver band, array configuration, and properties of the target region are conducted. Conclusions. The simulation results demonstrate the high scientific potential that ALMA already has with the currently offered capabilities for solar observations. For the study of small-scale dynamic events, however, the spatial resolution is still crucial, and wide array configurations are preferable. In any case, it is essential to take the effects due to limited spatial resolution into account in the analysis of observational data. Finally, the further development of observing capabilities including wider array configurations and advanced imaging procedures yields a high potential for future ALMA observations of the Sun.
Study Analysis Group 21 (SAG21) of NASA’s Exoplanet Exploration Program Analysis Group (ExoPAG) was organized to study the effect of stellar contamination on space-based transmission spectroscopy, a method for studying exoplanetary atmospheres by measuring the wavelength-dependent radius of a planet as it transits its star. Transmission spectroscopy relies on a precise understanding of the spectrum of the star being occulted. However, stars are not homogeneous, constant light sources but have temporally evolving photospheres and chromospheres with inhomogeneities like spots, faculae, plages, granules, and flares. This SAG brought together an interdisciplinary team of more than 100 scientists, with observers and theorists from the heliophysics, stellar astrophysics, planetary science, and exoplanetary atmosphere research communities, to study the current research needs that can be addressed in this context to make the most of transit studies from current NASA facilities like HST and JWST. The analysis produced 14 findings, which fall into three Science Themes encompassing (1) how the Sun is used as our best laboratory to calibrate our understanding of stellar heterogeneities (‘The Sun as the Stellar Benchmark’), (2) how stars other than the Sun extend our knowledge of heterogeneities (‘Surface Heterogeneities of Other Stars’) and (3) how to incorporate information gathered for the Sun and other stars into transit studies (‘Mapping Stellar Knowledge to Transit Studies’). In this invited review, we largely reproduce the final report of SAG21 as a contribution to the peer-reviewed literature.
Context. Due to their wide wavelength coverage across the millimeter to centimeter (mm–cm) range and their increased sensitivity, modern interferometric arrays facilitate observations of the thermal and non-thermal radiation that is emitted from different layers in the outer atmospheres of stars. Aims. We study the spectral energy distribution (Sobs(ν)) of main-sequence stars based on archival observations in the mm–cm range with the aim to study their atmospheric stratification as a function of stellar type. Methods. The main-sequence stars with significant detection in mm bands were identified in the ALMA Science Archive. These data were then complemented with spectral flux data in the extreme ultraviolet to cm range as compiled from various catalogues and observatory archives. We compared the resultant Sobs(ν) of each star with a photospheric emission model (Smod(ν)) calculated with the PHOENIX code. The departures of Sobs(ν) from Smod(ν) were quantified in terms of a spectral flux excess parameter (ΔS∕Smod) and studied as a function of stellar type. Results. The initial sample consists of 12 main-sequence stars across a broad range of spectral types from A1 to M3.5 and the Sun-as-a-star as reference. The stars with Teff = 3000–7000 K (F–M type) showed a systematically higher Sobs(ν) than Smod(ν) in the mm–cm range. Their ΔS∕Smod exhibits a monotonic rise with decreasing frequency. The steepness of this rise is higher for cooler stars in the Teff = 3000–7000 K range, although the single fully convective star (Teff ~ 3000 K) in the sample deviates from this trend. Meanwhile, Sobs(ν) of the A-type stars agrees with Smod(ν) within errors. Conclusions. The systematically high ΔS∕Smod in F–M stars indicates hotter upper atmospheric layers, that is, a chromosphere and corona in these stars, like for the Sun. The mm–cm ΔS∕Smod spectrum offers a way to estimate the efficiency of the heating mechanisms across various outer atmospheric layers in main-sequence stars, and thereby to understand their structure and activity. We emphasise the need for dedicated surveys of main-sequence stars in the mm–cm range.
In recent decades our understanding of solar active regions (ARs) has improved substantially due to observations made with better angular resolution and wider spectral coverage. While prior AR observations have shown that these structures were always brighter than the quiet Sun at centimeter wavelengths, recent observations at millimeter and submillimeter wavelengths have shown ARs with well defined dark umbrae. Given this new information, it is now necessary to update our understanding and models of the solar atmosphere in active regions. In this work, we present a data-constrained model of the AR solar atmosphere, in which we use brightness temperature measurements of NOAA 12470 at three radio frequencies: 17, 100 and 230 GHz. The observations at 17 GHz were made by the Nobeyama Radioheliograph (NoRH), while the observations at 100 and 230 GHz were obtained by the Atacama Large Millimeter/submillimeter Array (ALMA). Based on our model, which assumes that the radio emission originates from thermal free-free and gyroresonance processes, we calculate radio brightness temperature maps that can be compared with the observations. The magnetic field at distinct atmospheric heights was determined in our modelling process by force-free field extrapolation using photospheric magnetograms taken by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). In order to determine the best plasma temperature and density height profiles necessary to match the observations, the model uses a genetic algorithm that modifies a standard quiet Sun atmospheric model. Our results show that the height of the transition region (TR) of the modelled atmosphere varies with the type of region being modelled: for umbrae the TR is located at 1080 ± 20 km above the solar surface; for penumbrae, the TR is located at 1800 ± 50 km; and for bright regions outside sunspots, the TR is located at 2000 ± 100 km. With these results, we find good agreement with the observed AR brightness temperature maps. Our modelled AR can be used to estimate the emission at frequencies without observational coverage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.