BackgroundAlthough the nematode Caenorhabditis elegans is a major model organism in diverse biological areas and well studied under laboratory conditions, little is known about its ecology. Therefore, characterization of the species’ natural habitats should provide a new perspective on its otherwise well-studied biology. The currently best characterized populations are in France, demonstrating that C. elegans prefers nutrient- and microorganism-rich substrates such as rotting fruits and decomposing plant matter. In order to extend these findings, we sampled C. elegans continuously across 1.5 years from rotting apples and compost heaps in three North German locations.ResultsC. elegans was found throughout summer and autumn in both years. It shares its habitat with the related nematode species C. remanei, which could thus represent an important competitor for a similar ecological niche. The two species were isolated from the same site, but rarely the same substrate sample. In fact, C. elegans was mainly found on compost and C. remanei on rotten apples, possibly suggesting niche separation. The occurrence of C. elegans itself was related to environmental humidity and rain, although the correlation was significant for only one sampling site each. Additional associations between nematode prevalence and abiotic parameters could not be established.ConclusionsTaken together, our findings vary from the previous results for French C. elegans populations in that the considered German populations always coexisted with the congeneric species C. remanei (rather than C. briggsae as in France) and that C. elegans prevalence can associate with humidity and rain (rather than temperature, as suggested for French populations). Consideration of additional locations and time points is thus essential for full appreciation of the nematode's natural ecology.
Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying genetic mechanisms and associated trait functions that are unique to rapid coevolutionary change are generally unknown. We here combined experimental evolution of the bacterial biocontrol agent Bacillus thuringiensis and its nematode host Caenorhabditis elegans with large-scale phenotyping, whole genome analysis, and functional genetics to demonstrate the selective benefit of pathogen virulence and the underlying toxin genes during the adaptation process. We show that: (i) high virulence was specifically favoured during pathogen–host coevolution rather than pathogen one-sided adaptation to a nonchanging host or to an environment without host; (ii) the pathogen genotype BT-679 with known nematocidal toxin genes and high virulence specifically swept to fixation in all of the independent replicate populations under coevolution but only some under one-sided adaptation; (iii) high virulence in the BT-679-dominated populations correlated with elevated copy numbers of the plasmid containing the nematocidal toxin genes; (iv) loss of virulence in a toxin-plasmid lacking BT-679 isolate was reconstituted by genetic reintroduction or external addition of the toxins. We conclude that sustained coevolution is distinct from unidirectional selection in shaping the pathogen's genome and life history characteristics. To our knowledge, this study is the first to characterize the pathogen genes involved in coevolutionary adaptation in an animal host–pathogen interaction system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.