The outbreak of a novel coronavirus associated with acute respiratory disease, called COVID‐19, marked the introduction of the third spillover of an animal coronavirus (CoV) to humans in the last two decades. The genome analysis with various bioinformatics tools revealed that the causative pathogen (SARS‐CoV‐2) belongs to the subgenus Sarbecovirus of the genus Betacoronavirus, with highly similar genome as bat coronavirus and receptor‐binding domain (RBD) of spike glycoprotein as Malayan pangolin coronavirus. Based on its genetic proximity, SARS‐CoV‐2 is likely to have originated from bat‐derived CoV and transmitted to humans via an unknown intermediate mammalian host, probably Malayan pangolin. Further, spike protein S1/S2 cleavage site of SARS‐CoV‐2 has acquired polybasic furin cleavage site which is absent in bat and pangolin suggesting natural selection either in an animal host before zoonotic transfer or in humans following zoonotic transfer. In the current review, we recapitulate a preliminary opinion about the disease, origin and life cycle of SARS‐CoV‐2, roles of virus proteins in pathogenesis, commonalities, and differences between different corona viruses. Moreover, the crystal structures of SARS‐CoV‐2 proteins with unique characteristics differentiating it from other CoVs are discussed. Our review also provides comprehensive information on the molecular aspects of SARS‐CoV‐2 including secondary structures in the genome and protein–protein interactions which can be useful to understand the aggressive spread of the SARS‐CoV‐2. The mutations and the haplotypes reported in the SARS‐CoV‐2 genome are summarized to understand the virus evolution.
Plants get phosphorus, water and other soil nutrients at the cost of sugar through mycorrhizal symbiotic association. A common mycorrhizal network (CMN) – a dense network of mycorrhizal hyphae – provides a passage for exchange of chemicals and signals between the plants sharing CMN. Mycorrhisation impact plants at hormonal, physiological and metabolic level and successful symbiosis also regulates ecology of the plant rhizosphere. Apart from nutritional benefits, mycorrhisation provides an induced resistance to the plants known as mycorrhiza induced resistance (MIR). MIR is effective against soil as well as foliar pathogens and pest insects. In this review, molecular mechanisms underlying MIR such as role of phytohormones, their cross talk and priming effect are discussed. Evidence of MIR against economically important pathogens and pest insects in different plants is summarised. Mycorrhiza induces many plant secondary metabolites, many of which have a role in plant defence. Involvement of these secondary metabolites in mycorrhisation and their putative role in MIR are further reviewed. Controversies about MIR are also briefly discussed in order to provide insights on the scope for research about MIR. We have further extended our review with an open ended discussion about the possibilities for transgenerational MIR.
The outbreak of a novel coronavirus (SARS-CoV2) associated with acute respiratory disease called COVID-19 marked the introduction of the third spillover of an animal CoV to humans in the last 2 decades. The SARS-CoV2 genome analysis with various bioinformatics tools revealed that it belongs to beta CoVs genera, with highly similar genome as bat coronavirus and receptor binding domain (RBD) of spike glycoprotein as Malayan pangolin coronavirus. Based on its genetic proximity, SARS-CoV2 is likely to be originated from bat derived CoV and transmitted to humans via an unknown intermediate mammalian host, probably Malayan pangolin. Further spike protein S1/S2 cleavage site of SARS-CoV2 has acquired polybasic furin cleavage site which is absent in bat and pangolin suggesting natural selection either in an animal host before zoonotic transfer or in humans following zoonotic transfer. In the current review, we recapitulate a preliminary opinion about the disease, origin and life cycle of SARS-CoV2, roles of virus proteins in pathogenesis, commonalities and differences between different corona viruses. We have also highlighted the evidences regarding the potential drugs and vaccine candidates with their modes of action to cope with this viral outbreak. Our review provides comprehensive up-dated information on molecular aspects of the SARS-CoV2.
Nothapodytes nimmoniana is a medicinally important plant producing anticancer monoterpene indole alkaloid (MIA), camptothecin (CPT). The CPT is synthesized through the strictosidine intermediate following the MIA pathway; however, transcriptional regulation of CPT pathway is still elusive in N. nimmoniana. Biosynthesis of MIA is regulated by various TFs belonging to AP2/ERF, bHLH, MYB, WRKY families. The present study identified transcriptionally active full-length 105 AP2/ERF and 68 bHLH family TFs from the N. nimmoniana. AP2/ERF TFs were divided into three subfamilies along with a soloist, while, bHLH TFs were divided into ten subfamilies according to their phylogenetic similarities. Three group IXa ERFs, Nn-ERF22, Nn-ERF29 and Nn-ERF41, one subfamily IVa TF Nn-bHLH7 and three subfamilies IIIe Nn-bHLH33, Nn-bHLH51 and Nn-bHLH52 clustered with the TFs regulating alkaloid biosynthesis in Catharanthus roseus, tomato, tobacco and Artemisia annua. Expression of these TFs in N. nimmoniana was higher in roots which is a primary CPT accumulating tissue. Moreover, genome skimming approach was used to reconstruct the promoter regions of candidate ERF genes to identify the cis-regulatory elements. The presence of G-boxes and other JA-responsive elements in the promoter suggests the regulation of ERFs by bHLHs. The present study effectively generated and used genomics resource for characterization of regulatory TFs from non-model medicinal plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.