Active pharmaceutical ingredients and pharmaceutical excipients are the core of any pharmaceutical preparation. API's are responsible for the therapeutic activity while excipients are non-pharmacological ingredients which are used in the manufacturing of pharmaceutical preparations. As we know that some polymers have thickening property, also the water based formulations are fluid in nature therefore in order to change the rheology of such formulations various polymers are used. These polymers act by increasing the viscosity of formulations. Starch, guar gum, alginates, pectin, gelatin, agar, carrageenan, cellular derivatives are the examples of natural polymer that are used to increase the viscosity of water based formulations meant for topical application. The present review deals with the use of such natural polymers as constituents of anti-aging formulations. As is well-known that aging is a natural process in which rate of production of new cells reduces while the rate of degradation of old cells increases because the normal physiology of body changes and free radicals produced by mitochondria as a byproduct and are oxygen containing highly reactive molecules. The antiaging preparations basically neutralize the effect of free radicals and protect our cell from premature degradation. On a contrary note, the already in use synthetic polymers have adverse effect on human body as well as on environment. It is well advocated in various researches that natural polymers have no or less side effects in comparison to synthetic polymers, giving them a positive lead for incorporation to various antiaging formulations. The present review gives a deep insight on the nature of polymers used over ages, there applications and incorporation into different cosmeceuticals. It also discusses the process and mechanism of aging and the phenomenon by which cell damage can be overcome. Finally, the authors have concluded with the upcoming scenario of the use of naturally derived polymers in various skin care preparations.
Alzheimer’s disease (AD) is a disorder of brain which progressively weakens the cognitive function. It is occur due to formation of β-amyloid plaques, neurofibrillary tangles, and degeneration of cholinergic neurotransmitter. There is no effective treatment capable of slowing down disease progression, current pharmacotherapy for AD only provides symptomatic relief and limited improvement in cognitive functions. Many molecules have been explored that show promising outcomes in AD therapy and can regulate cellular survival through different pathways. Present study involves current directions in the search for novel, potentially effective agents for the treatment of AD, as well as selected promising treatment strategies. These include agents acting upon the β-amyloid, such as vaccines, antibodies and inhibitors or modulators of γ- and β-secretase; agents directed against the tau protein. Current clinical trials with Aβ antibodies (solanezumab, bapineuzumab, and crenezumab) seem to be promising, while vaccines against the tau protein (AADvac1) are now in primary-stage trials. Most phase II clinical trials ending with a positive result do not succeed in phase III, often due to serious side effects or lack of therapeutic efficacy but Abucanumab (marketed as Aduhelm) now approved by USFDA in 2021 for the treatment of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.