In this article, two models for phonon transmission across semiconductor interfaces are investigated and demonstrated in the context of large-scale spatially three-dimensional calculations of the phonon Boltzmann transport equation (BTE). These include two modified forms of the classical diffuse mismatch model (DMM): one, in which dispersion is accounted for and another, in which energy transfer between longitudinal acoustic (LA) and transverse acoustic (TA) phonons is disallowed. As opposed to the vast majority of the previous studies in which the interface is treated in isolation, and the thermal boundary conductance is calculated using closed-form analytical formulations, the present study also considers the interplay between the interface and intrinsic (volumetric) scattering of phonons. This is accomplished by incorporating the interface models into a parallel solver for the full seven-dimensional BTE for phonons. A verification study is conducted in which the thermal boundary resistance of a silicon/germanium interface is compared against the previously reported results of molecular dynamics (MD) calculations. The BTE solutions overpredicted the interfacial resistance, and the reasons for this discrepancy are discussed. It is found that due to the interplay between intrinsic and interface scattering, the interfacial thermal resistance across a Si(hot)/Ge(cold) bilayer is different from that of a Si(cold)/Ge(hot) bilayer. Finally, the phonon BTE is solved for a nanoscale three-dimensional heterostructure, comprised of multiple blocks of silicon and germanium, and the time evolution of the temperature distribution is predicted and compared against predictions using the Fourier law of heat conduction.
In cipher algorithms, the encryption and decryption are based on the same key. There are some limitations in cipher algorithms, for example in polyalphabetic substitution cipher the key size must be equal to plaintext otherwise it will be repeated and if the key is known then encryption becomes useless. This paper aims to improve the said limitations by designing of Triple key security algorithm (TKS) in which the key is modified on polyalphabetic substitution cipher to maintain the size of the key and plaintext. Each plaintext character is substituted by an alternative message. The mode of substitution is transformed cyclically which depends on the current position of the modified communication. Three keys are used in the encryption and decryption process on 8 or 16 rounds with the Exclusively-OR (XOR) of the 1 st key. This study also identifies a single-key attack on multiple rounds block cipher in mobile communications and applied the proposed technique to prevent the attack. By utilization of the TKS algorithm, the decryption is illustrated, and security is analyzed in detail with mathematical examples.
Time Domain Thermo-Reflectance (TDTR) experiments have been recently identified as a viable pathway toward extracting the phonon mean free path spectrum of semiconductor materials. However, this requires an intervening model. It is now widely believed that the frequency and polarization dependent phonon Boltzmann Transport Equation (BTE) is the most suitable model for this purpose. In this article, TDTR experiments are simulated using large-scale parallel computations of the phonon BTE in a two-dimensional computational domain. Silicon is used as the candidate substrate material. Simulations are performed for multiple pulse and modulation cycles of the TDTR pump laser. This requires resolution of a picosecond laser pulse within a computational timeframe that spans several hundreds of nanoseconds. The metallic transducer layer on top of the substrate is modeled using the Fourier law and coupled to the BTE within the silicon substrate. Studies are conducted for four different laser spot sizes and two different modulation frequencies. The BTE results are fitted to the Fourier law, and effective thermal conductivities are extracted. It is demonstrated that the time delay of the probe laser could have a significant effect on the fitted (extracted) thermal conductivity value. The modulation frequency is found to have negligible effect on the thermal conductivity, while the spot size variation exhibits significant impact. Both trends are found to be in agreement with experimental observations. The thermal conductivity accumulation function is also computed, and the effect of the mean free path spectrum on the thermal conductivity suppression is delineated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.