The current COVID-19 pandemic caused by SARS-CoV-2 has prompted investigators worldwide to search for an effective antiviral treatment. A number of anti-viral drugs such as ribavirin, remdesivir, lopinavir/ritonavir, antibiotics such as azithromycin and doxycycline, and anti-parasite such as ivermectin have been recommended for COVID-19 treatment. In addition, sufficient pre-clinical rationale and evidence have been presented to use chloroquine for the treatment of COVID-19. Furthermore, Zn has the ability to enhance innate and adaptive immunity in the course of a viral infection. Besides, Zn supplement can favour COVID-19 treatment using those suggested and/or recommended drugs. Again, the effectiveness of Zn can be enhanced by using chloroquine as an ionophore while Zn inside the infected cell can stop SARS-CoV-2 replication. Given those benefits, this perspective paper describes how and why Zn could be given due consideration as a complement to the prescribed treatment of COVID-19.
Introduction: Flaxseeds offer a wide range of pharmacological properties including antioxidant, antibacterial and anticancer. However its effect on mesenchymal stem cells has not been elucidated. Thus, this study aimed to determine the effects of flaxseed crude extract on stem cell from human exfoliated deciduous teeth (SHED) in terms of cell viability, morphology and proliferation activity. Materials and Methods: Whole flaxseeds were ground and extracted with absolute ethanol using soxhlet extractor. The effects of flaxseed on SHED were assessed for cell viability using MTT assay, cell morphology using inverted microscope and proliferative activity describe as population doubling time (PDT) using alamar Blue assay. Fatty acid composition of flaxseed was analysed using gas chromatography-mass spectrometry (GCMS) instrumental technique. Results: The effects of flaxseed on SHED were observed to be dose-dependent, where higher concentration of the extract resulted in lower cell viability. The concentration of the flaxseed required to inhibit 50% of cell viability (IC50) was 10.56±0.22 mg/ml. Morphological observation demonstrated that flaxseed altered the cell morphology at concentration above 8 mg/ml. Based on alamarBlue assay, SHED treated with flaxseed at concentration 0.5, 1, 2, 4, 8, 10.56 mg/ml showed no significant difference of PDT when compared to control (p>.05). GCMS analysis revealed the presence of linolenic acid as major compound, linoleic acid and palmitic acid and oleic acid. Conclusion(s): Crude extract of flaxseed at concentration below 8 mg/ml may be applied in the future study of SHED. The linolenic acid in flaxseed may have been responsible for the cell viability and proliferation activity of SHED.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.