The current model used to define T cell export from the thymus suggests that emigrating lymphocytes seed the peripheral organs as functionally mature cells. This model holds true for the majority of T cells exported from the thymus with the exception of invariant NK T (iNKT) cells. iNKT cells undergo lineage expansion after positive selection and acquire NK receptor expression once fully mature; yet, the majority of mature iNKT cells are retained in the thymus by an as of yet unidentified mechanism. In this study we demonstrate that mature iNKT cells are retained in the thymus by the chemokine receptor CXCR3. We propose that the expression of CXCR3 ligands in the thymic medullary epithelium promotes the chemotactic retention of mature iNKT thymocytes and prevents leakage of iNKT cells into the peripheral circulation
The adipocyte-derived cytokine leptin acts as a metabolic switch, connecting the body's metabolism to high-energy consuming processes such as reproduction and immune responses. Accumulating evidence suggests that leptin plays a role in human pathologies, such as autoimmune diseases and cancer, thus providing a rationale for the development of leptin antagonists. In the present study, we generated and evaluated a panel of neutralizing nanobodies targeting the LR (leptin receptor). A nanobody comprises the variable domain of the naturally occurring single-chain antibodies found in members of the Camelidae family. We identified three classes of neutralizing nanobodies targeting different LR subdomains: i.e. the CRH2 (cytokine receptor homology 2), Ig-like and FNIII (fibronectin type III) domains. Only nanobodies directed against the CRH2 domain inhibited leptin binding. We could show that a nanobody that targets the Ig-like domain potently interfered with leptin-dependent regulation of hypothalamic NPY (neuropeptide Y) expression. As a consequence, daily intraperitoneal injection increased body weight, body fat content, food intake, liver size and serum insulin levels. All of these characteristics resemble the phenotype of leptin and LR-deficient animals. The results of the present study support proposed models of the activated LR complex, and demonstrate that it is possible to block LR signalling without affecting ligand binding. These nanobodies form new tools to study the mechanisms of BBB (blood-brain barrier) leptin transport and the effect of LR inhibition in disease models.
IntroductionDisease severity in collagen-induced arthritis (CIA) is commonly assessed by clinical scoring of paw swelling and histological examination of joints. Although this is an accurate approach, it is also labour-intensive and the application of less invasive and less time-consuming methods is of great interest. However, it is still unclear which of these methods represents the most discriminating measure of disease activity.MethodsWe undertook a comparative analysis in which different measurements of inflammation and tissue damage in CIA were studied on an individual mouse level. We compared the current gold standard methods - clinical scoring and histological examination - with alternative methods based on scoring of X-ray or micro-computed tomography (CT) images and investigated the significance of systemically expressed proteins, involved in CIA pathogenesis, that have potential as biomarkers.ResultsLinear regression analysis revealed a marked association of serum matrix metalloproteinase (MMP)-3 levels with all features of CIA including inflammation, cartilage destruction and bone erosions. This association was improved by combined detection of MMP-3 and anti-collagen IgG2a antibody concentrations. In addition, combined analysis of both X-ray and micro-CT images was found to be predictive for cartilage and bone damage. Most remarkably, validation analysis using an independent data set proved that variations in disease severity, induced by different therapies, could be accurately represented by predicted values based on the proposed parameters.ConclusionsOur analyses revealed that clinical scoring, combined with serum MMP-3, anti-collagen IgG2a measurement and scoring of X-ray and micro-CT images, yields a comprehensive insight into the different aspects of disease activity in CIA.
Objective. To investigate the role of invariant natural killer T (iNKT) cells in TNF⌬ARE/؉ mice, an animal model of spondylarthritis (SpA) with both gut and joint inflammation.Methods. The frequency and activation of iNKT cells were analyzed on mononuclear cells from the lymph nodes and livers of mice, using flow cytometry with ␣-galactosylceramide/CD1d tetramers and quantitative polymerase chain reaction for the invariant V ␣ 14-J ␣ 18 rearrangement. Bone marrow-derived dendritic cells (DCs) were obtained by expansion of primary cells with granulocyte-macrophage colony-stimulating factor followed by coculture with iNKT cell hybridomas, and interleukin-2 release into the cocultures was then measured by enzyme-linked immunosorbent assay (ELISA). Cytokine levels were determined by ELISA or cytometric bead array analyses of freshly isolated DCs and iNKT cells in mixed cocultures. TNF ⌬ARE/؉ mice were backcrossed onto J ␣ 18 ؊/؊ and CD1d ؊/؊ mice, and disease onset was evaluated by clinical scoring, positron emission tomography, and histology. CD1d levels were analyzed on mononuclear cells in paired blood and synovial fluid samples from patients with SpA compared with healthy control subjects. Results. In the absence of iNKT cells, symptoms of gut and joint inflammation in TNF⌬ARE/؉ mice were aggravated. Invariant NKT cells were activated during the course of the disease. This was linked to an enrichment of inflammatory DCs, characterized by high levels of CD1d, particularly at draining sites of inflammation. A similar increase in CD1d levels was observed on DCs from patients with SpA. Inflammatory DCs from TNF ⌬ARE/؉ mice stimulated iNKT cells to produce immunomodulatory cytokines, in the absence of exogenous stimulation. Prolonged, continuous exposure, but not short-term exposure, to tumor necrosis factor (TNF) was found to be responsible for the enhanced DC-NKT cell crosstalk.Conclusion. This mode of iNKT cell activation represents a natural counterregulatory mechanism for the dampening of TNF-driven inflammation.The spondylarthritides (SpA) are a group of chronic inflammatory disorders that primarily affect the joints and are accompanied by a variety of extraarticular manifestations, such as intestinal and ocular inflammation. Joint symptoms include peripheral arthritis and enthesitis (1), sacroiliitis and spondylitis, and new bone formation leading to ankylosis. There is major overlap between the different clinical entities of SpA, and familial clustering has been observed. Mechanisms contributing to their pathogenesis include genetic predisposition (linked to various factors, including HLA-B27, interleukin-23 receptor , and aminopeptidase regulator of tumor necrosis factor [TNF] receptor 1 shedding [ARTS1], among others) and certain environ-
The importance of T cell participation in the aetiology and pathogenesis of rheumatoid arthritis (RA) is now widely appreciated. The disease is mediated by activated pro-inflammatory, self-reactive T helper cells, instigating the chronic autoimmune response characteristic of rheumatoid inflammation. Natural killer T (NKT) cells are a distinctive population of T cells thought to protect self-tissues from damaging inflammatory immune responses, and are often recognized as a regulatory T cell subtype, regulating the magnitude or class of the immune response. Recently, a number of studies have provided insight concerning the role of NKT cells in different models of autoimmune joint inflammation, suggesting the involvement of this specialized T cell subset in controlling initiation and perpetuation of arthritic disease. The aim of this review is to provide rheumatologists with an introduction of the principal features of NKT cells, to give an overview of the data obtained in animal models of arthritis and to discuss the hypothesized mechanisms. Finally, we will speculate on future prospects with regard to NKT cell-targeted treatment of arthritic disease by use of glycolipids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.