Motivation Queueing theory can be effective in simulating biochemical reactions taking place in living cells, and the paper paves a step towards development of a comprehensive model of cell metabolism. Such a model could help to accelerate and reduce costs for developing and testing investigational drugs reducing number of laboratory animals needed to evaluate drugs. Results The paper presents a Krebs cycle model based on queueing theory. The model allows for tracking of metabolites concentration changes in real time. To validate the model, a drug-induced inhibition affecting activity of enzymes involved in Krebs cycle was simulated and compared with available experimental data. Availability The source code is freely available for download at https://github.com/UTP-WTIiE/KrebsCycleUsingQueueingTheory, implemented in C# supported in Linux or MS Windows. Supplementary information Supplementary data (tables with kinetic constants, kinetic equations and pseudocode) are available at Bioinformatics online.
Due to its role in maintaining the proper functioning of the cell, the pentose phosphate pathway (PPP) is one of the most important metabolic pathways. It is responsible for regulating the concentration of simple sugars and provides precursors for the synthesis of amino acids and nucleotides. In addition, it plays a critical role in maintaining an adequate level of NADPH, which is necessary for the cell to fight oxidative stress. These reasons prompted the authors to develop a computational model, based on queueing theory, capable of simulating changes in PPP metabolites’ concentrations. The model has been validated with empirical data from tumor cells. The obtained results prove the stability and accuracy of the model. By applying queueing theory, this model can be further expanded to include successive metabolic pathways. The use of the model may accelerate research on new drugs, reduce drug costs, and reduce the reliance on laboratory animals necessary for this type of research on which new methods are tested.
Background: This paper presents a novel lightweight approach based on machine learning methods supporting COVID-19 diagnostics based on X-ray images. The presented schema offers effective and quick diagnosis of COVID-19. Methods: Real data (X-ray images) from hospital patients were used in this study. All labels, namely those that were COVID-19 positive and negative, were confirmed by a PCR test. Feature extraction was performed using a convolutional neural network, and the subsequent classification of samples used Random Forest, XGBoost, LightGBM and CatBoost. Results: The LightGBM model was the most effective in classifying patients on the basis of features extracted from X-ray images, with an accuracy of 1.00, a precision of 1.00, a recall of 1.00 and an F1-score of 1.00. Conclusion: The proposed schema can potentially be used as a support for radiologists to improve the diagnostic process. The presented approach is efficient and fast. Moreover, it is not excessively complex computationally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.