the rate of chemical reaction and the profile of a coalesced droplet, which is a significant reference in droplet-based microfluidic systems for biochemical applications.
Bird flight involves complicated wing kinematics, especially during hovering flight. The detailed aerodynamic effects of wings with higher degrees of freedom (DOFs) remain to be further investigated. Therefore, we designed a novel multiarticulate flapping-wing robot with five DOFs on each wing. Using this robot we aimed to investigate the more complicated wing kinematics of birds, which are usually difficult to test and analyze. In this study the robot was programmed to mimic the previously observed hovering motion of passerines, and force measurements and particle image velocimetry experiments. We experimented with two different wing-folding amplitudes: one with a larger folding amplitude, similar to that of real passerines, and one with only half the amplitude. The robot kinematics were verified utilizing direct linear transformation, which confirmed that the wing trajectories had an acceptable correlation with the desired motion. According to the lift force measurements, four phases of the wingbeat cycle were characterized and elaborated through camera images and flow visualization. We found that the reduction in folding amplitude caused a higher negative force during upstrokes and also induced a greater positive force at the initial downstroke through ‘wake capture’. This could increase the vertical oscillation while hovering despite a minor increase in average force production. This phenomenon was not observed during forward flight in previous studies. Our results provide a critical understanding of the effect of wing folding which is required for designing the wing kinematics of future advanced flapping-wing micro aerial vehicles.
This work investigates the effects of body angle and wing deformation on the lift of free-flying butterflies. The flight kinematics were recorded using three high-speed cameras, and particle-image velocimetry (PIV) was used to analyze the transient flow field around the butterfly. Parametric studies via numerical simulations were also conducted to examine the force generation of the wing by fixing different body angles and amplifying the chordwise deformation. The results show that appropriately amplifying chordwise deformation enhances wing performance due to an increase in the strength of the vortex and a more stabilized attached vortex. The wing undergoes a significant chordwise deformation, which can generate a larger lift coefficient than that with a higher body angle, resulting in a 14% increase compared to a lower chordwise deformation and body angle. This effect is due to the leading-edge vortex attached to the curved wing, which alters the force from horizontal to vertical. It, therefore, produces more efficient lift during flight. These findings reveal that the chordwise deformation of the wing and the body angle could increase the lift of the butterfly. This work was inspired by real butterfly flight, and the results could provide valuable knowledge about lift generation for designing microaerial vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.