Ultrahigh-speed circuit applications of resonant-tunneling diodes (RTDs) have been developed. The key points are the utilization of the edge-triggered and latching properties arising from negative differential resistance of the RTD, and the combination of RTDs and high electron mobility transistors (HEMTs). High-speed and low power operation of various flip-flop (FF) circuits monolithically integrating InP-based RTDs and HEMTs have been demonstrated at room temperature, including a delayed flip-flop operation at 35 Gbith. By extending the concept of electronic-input circuits to the optical-input circuit, an ultrahigh-speed optoelectronic circuit integrating RTDs and a photodiode has been developed. Using this optoelectronic circuit, we have succeeded in demultiplexing a 80 Gbitls optical signal into a 40 Gbitls electrical signal. These results show the potentiality of RTD-based circuits for ultrahigh-speed communications and signal processing circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.