Plumbagin inhibited activation, proliferation, cytokine production, and graft-versus-host disease in lymphocytes and inhibited growth of tumor cells by suppressing nuclear factor-κB (NF-κB). Plumbagin was also shown to induce reactive oxygen species (ROS) generation in tumor cells via an unknown mechanism. Present report describes a novel role of cellular redox in modulation of immune responses in normal lymphocytes by plumbagin. Plumbagin depleted glutathione (GSH) levels that led to increase in ROS generation. The decrease in GSH levels was due to direct reaction of plumbagin with GSH as evinced by mass spectrometric and HPLC analysis. Further, addition of plumbagin to cells resulted in decrease in free thiol groups on proteins and increase in glutathionylation of proteins. The suppression of mitogen-induced T-cell proliferation and cytokine (IL-2/IL-4/IL-6/IFN-γ) production by plumbagin was abrogated by thiol antioxidants but not by non-thiol antioxidants confirming that thiols but not ROS play an important role in biological activity of plumbagin. Plumbagin also abrogated mitogen-induced phosphorylation of ERK, IKK, and degradation of IκB-α. However, it did not affect phosphorylation of P38, JNK, and AKT. Our results for the first time show that antiproliferative effects of plumbagin are mediated by modulation of cellular redox. These results provide a rationale for application of thiol-depleting agents as anti-inflammatory drugs.
Heat stroke-induced death is a major killer worldwide. Mice were subjected to acute heat stress by exposing them to whole-body hyperthermia (WBH) treatment and were used as a model to study heat stroke. Administration of L-arginine (L-arg, 120 mg/kg, i.p) 2 h after the cessation of WBH rescued the mice from heat-induced death and reduced the hypothermia. Heat shock protein 70 levels in the liver were increased significantly in heat-stressed mice administered L-arg compared with the heat-stressed group. WBH induced apoptosis, as indicated by DNA fragmentation, and increased levels of p53 and caspase-3 activity, which were significantly reduced by the administration of L-arg. The levels of inducible nitric oxide synthase in the liver, nitrite, and inflammatory cytokines like interleukin 1beta and tumor necrosis factor-alpha in the serum increased in WBH-treated mice. The levels of the above markers of heat stress significantly decreased in L-arg-treated mice. Kinin-B1 receptor (kinin-B1R) in cardiac tissue that is upregulated in heat stressed mice was significantly lower in L-arg-administered mice. These data suggest the potential use of L-arg, a nonessential amino acid that is used as an enteral diet supplement, to treat heat stroke-related injury when administered at the appropriate dose and time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.