The Néel state in fermionic mixtures of two pseudospin species in an optical lattice is analyzed at low temperatures. Experimentally it remains a challenge to demonstrate antiferromagnetic correlations in ultracold fermionic quantum gases. We find that, while in balanced systems the Néel order parameter can point in any spatial direction, in imbalanced mixtures antiferromagnetism is strictly perpendicular to the quantization axis ͑i.e., the z axis͒. Since, experimentally, one always has to assume some minimal imbalance this should have important consequences for ongoing experiments.
To evaluate increased image latitude post-processing of digital projection radiograms for the detection of pulmonary nodules. 20 porcine lungs were inflated inside a chest phantom, prepared with 280 solid nodules of 4-8 mm in diameter and examined with direct radiography (3.0x2.5 k detector, 125 kVp, 4 mAs). Nodule position and size were documented by CT controls and dissection. Four intact lungs served as negative controls. Image post-processing included standard tone scales and increased latitude with detail contrast enhancement (log-factors 1.0, 1.5 and 2.0). 1280 sub-images (512x512 pixel) were centred on nodules or controls, behind the diaphragm and over free parenchyma, randomized and presented to six readers. Confidence in the decision was recorded with a scale of 0-100%. Sensitivity and specificity for nodules behind the diaphragm were 0.87/0.97 at standard tone scale and 0.92/0.92 with increased latitude (log factor 2.0). The fraction of "not diagnostic" readings was reduced (from 208/1920 to 52/1920). As an indicator of increased detection confidence, the median of the ratings behind the diaphragm approached 100 and 0, respectively, and the inter-quartile width decreased (controls: p<0.001, nodules: p=0.239) at higher image latitude. Above the diaphragm, accuracy and detection confidence remained unchanged. Here, the sensitivity for nodules was 0.94 with a specificity from 0.96 to 0.97 (all p>0.05). Increased latitude post-processing has minimal effects on the overall accuracy, but improves the detection confidence for sub-centimeter nodules in the posterior recesses of the lung.
In order to describe unbalanced ultracold fermionic quantum gases on optical lattices in a harmonic trap, we investigate an attractive (U < 0) asymmetric (t ↑ = t ↓ ) Hubbard model with a Zeeman-like magnetic field. In view of the model's spatial inhomogeneity, we focus in this paper on the solution at Hartree-Fock level. The Hartree-Fock Hamiltonian is diagonalized with particular emphasis on superfluid phases. For the special case of spin-independent hopping we analytically determine the number of solutions of the resulting self-consistency equations and the nature of the possible ground states at weak coupling. We present the phase diagram of the homogeneous system and numerical results for unbalanced Fermi-mixtures obtained within the local density approximation. In particular, we find a fascinating shell structure, involving normal and superfluid phases. For the general case of spin-dependent hopping we calculate the density of states and the possible superfluid phases in the ground state. In particular, we find a new magnetized superfluid phase.PACS. 03.75.Hh Static properties of condensates; thermodynamical, statistical, and structural properties -39.25.+k Atom manipulation (scanning probe microscopy, laser cooling, etc.) (see also 82.37.Gk STM and AFM manipulations of a single molecule in physical chemistry and chemical physics; for atom manipulation in nanofabrication and processing, see 81.16.Ta) -71.10.Fd Lattice fermion models (Hubbard model, etc.)
In recent literature on trapped ultracold atomic gases, calculations for 2D-systems are often done within the Dynamical Mean Field Theory (DMFT) approximation. In this paper, we compare DMFT to a fully two-dimensional, self-consistent second order perturbation theory for weak interactions in a repulsive Fermi-Hubbard model. We investigate the role of quantum and of spatial fluctuations when the system is in the antiferromagnetic phase, and find that, while quantum fluctuations decrease the order parameter and critical temperatures drastically, spatial fluctuations only play a noticeable role when the system undergoes a phase transition, or at phase boundaries in the trap. We conclude from this that DMFT is a good approximation for the antiferromagnetic Fermi-Hubbard model for experimentally relevant system sizes.
The general structure of the s-wave fermionic superfluid pairing order parameter is discussed for systems in thermal equilibrium. We demonstrate that for finite-size systems with fixed boundary conditions the pairing-amplitude may always be chosen as a real function in space, in contrast to systems underlying periodic boundary conditions, with drastical consequences for several postulated Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states. Using a simple mapping, we also investigate the consequences of our results for antiferromagnetic equilibrium states in a repulsive Hubbard model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.