Ubiquitin Specific Protease 26 (USP26) is a little studied ubiquitin-specific protease that is expressed specifically in the testis. In humans, some USP26 polymorphisms have been reported to be associated with impaired male fertility. However, how USP26 affects male reproduction remains unclear. We generated an antibody that stained specifically cultured cells expressing an epitope-tagged USP26 and used it to elucidate the biological function of USP26. Immunostaining of mouse testis sections as well as dispersed germ cells showed the presence of USP26 at the blood-testis barrier, near the Sertoli cell-germ cell interface of post-step 7 spermatids, and coating the dorsal surface of sperm head. Further RT-PCR assays detected the expression of Usp26 in germ cells, but not in primary Sertoli cell lines. In addition, USP26 immunoprecipitated from testis lysates exhibited deubiquitinating activities. The localization of USP26 in the testis suggests a possible role in the movement of germ cells along the seminiferous epithelium.
Spermatozoa emerging from the testis undergo a maturation process in the epididymis during which they change morphologically, biochemically and physiologically to gain motility and the ability to fertilize ova. We examined mouse epididymal sperm with immunostaining and transmission electron microscopy (EM) and identified a previously unknown structure on the apical hook. The structure has a coiled configuration around 11 nm in thickness and is present at the tip of each corner of the triangular-rod shaped perforatorium. Surveying sperm isolated from various regions of the epididymis indicated that mouse sperm acquire the hook rim (HR) structure during its passage through the proximal two-thirds of the caput epididymidis. The structure withstands vigorous sonication and harsh chemical treatments and remains intact after the acrosome reaction. Its location and sturdiness suggest a function in protecting the apical hook from mechanical wear during fertilization. Our EM images of epididymal sperm also revealed additional novel structures as well as lateral asymmetry of the sperm head, indicating that mouse sperm head has a structure more complex than previously recognized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.