We study in this paper the theory and applications of a nonlinear control technique, i.e., the so-called composite nonlinear feedback control, for a class of linear systems with actuator nonlinearities. It consists of a linear feedback law and a nonlinear feedback law without any switching element. The linear feedback part is designed to yield a closed-loop system with a small damping ratio for a quick response, while at the same time not exceeding the actuator limits for the desired command input levels. The nonlinear feedback law is used to increase the damping ratio of the closed-loop system as the system output approaches the target reference to reduce the overshoot caused by the linear part. It is shown that the proposed technique is capable of beating the well-known time-optimal control in the asymptotic tracking situations. The application of such a new technique to an actual hard disk drive servo system shows that it outperforms the conventional method by more than 30%. The technique can be applied to design servo systems that deal with "point-and-shoot" fast targeting.
Abstract-In this paper, adaptive neural control is presented for a class of strict-feedback nonlinear systems with unknown time delays. The proposed design method does not require a priori knowledge of the signs of the unknown virtual control coefficients. The unknown time delays are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. It is proved that the proposed backstepping design method is able to guarantee semiglobal uniformly ultimately boundedness of all the signals in the closed-loop. In addition, the output of the system is proven to converge to a small neighborhood of the origin. Simulation results are provided to show the effectiveness of the proposed approach.
Abstract-The rapid advances of evolutionary methods for multi-objective (MO) optimization poses the difficulty of keeping track of the developments in this field as well as selecting an appropriate evolutionary approach that best suits the problem in-hand. This paper aims to analyze the strength and weakness of different evolutionary methods proposed in literatures. For this purpose, ten existing well-known evolutionary MO approaches have been experimented and compared exte nsively on two benchmark problems with different MO optimization difficulties and characteristics. Besides considering the usual two important aspects of MO performance, i.e., the spread across the Pareto-optimal front as well as the ability to attain the global optimum or final trade -offs, this paper also proposes a few useful performance measures for better and comprehensive examination of each approach both quantitatively and qualitatively. Simulation results for the comparisons are commented and summarized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.