The morphology of nanocomposites plays a pivotal role in understanding their functionality and determines their capabilities for applications. The use of nanocomposite coatings requires a study of the size effects on their functional properties. Noble metal nanoparticles are promising candidates for nanocomposite thin film applications due to their antibacterial, plasmonic and photocatalytic properties. In this contribution, the morphology of Ag-TiO(2) and Au-TiO(2) nanocomposite thin films has been investigated experimentally using electron tomography in transmission electron microscopy in combination with UV/vis spectroscopy. Based on the additional 3D information obtained from tomography, we propose a two-step model towards the observed bimodal particle size in these nanocomposite thin films prepared by co-sputtering from two different sources. Furthermore, we show that the optical properties exhibit a well-defined relation with the morphology of the nanocomposite thin films. The present investigations demonstrate the potential of electron tomography for revealing the complex structure and formation processes of functional nanocomposites.
Ag-TiO2 nanocomposite coatings with varying Ag content were prepared by co-sputtering from two separate sputter sources. This technique allows to prepare coatings not only with a large variation of Ag content and different gradient but also allows much better control of nanocomposite thickness and nanostructure compared with mostly used techniques based on wet chemical approaches. Various thicknesses of nanocomposite layers with different deposition parameters were studied to obtain a better understanding on the growth of Ag nanostructures in the TiO2 films. The metal-volume-fraction was varied between 15% and 47%. Structural and microstructural investigations of the nanocomposite films were carried out by transmission electron microscopy. Special attention was paid to surface segregation of Ag and its suppression. The observed segregation on TiO2 contrasts sharply with the well known embedding tendency of Ag clusters on polymers. Functionality of the Ag-TiO2 nanocomposites was demonstrated via UV-Vis spectroscopy and antibacterial tests. It was shown that a thin layer of TiO2 can be used as an effective barrier to tailor the release behaviour of Ag ions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.