This paper presents a comprehensive electromagnetic and thermal analysis of radiation and its impact on human beings, due to the use of various types of commonly used mobile phones and communication antennas. This is one of the first studies that deals with a wide-range comparative investigation of modern cell phones, unlike the majority of existing work, which do not extend beyond the obsolete generic phone case. The rather severe, although overlooked, case of wireless local area network antennas is also considered, due to their increasing use and the large times of exposure associated with them.
-A comparative investigation of high-performance PML absorbers for the termination of 2-D nonlinear photonic bandgap (PBG) waveguides, analyzed by the FDTD method, is conducted. Third-order nonlinear materials are considered, whereas existing effective permittivity schemes are properly implemented for the modeling of circular interfaces between linear and nonlinear media.
An extension of the perfectly matched layer (PML) technique in quasi-static fields is developed. The new lowfrequency PML is based on a fictitious medium with diagonal tensor anisotropy. On the basis of a theoretical investigation, the material properties of the anisotropic layer are specified, so that it will be reflectionless for an arbitrary eddy-current field that may exist in free space. Furthermore, the PML is designed in such a way that outgoing eddy-current fields are sufficiently absorbed. The effectiveness of the low-frequency PML is validated by the implementation of the finite-element solution of a simple two-dimensional eddy-current problem as well as a more complicated three-dimensional one.Index Terms-Eddy currents, edge elements, numerical methods, perfectly matched layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.