The fluorescence detection of ultra high energy (≳1018 eV) cosmic rays requires a detailed knowledge of the fluorescence light emission from nitrogen molecules, which are excited by the cosmic ray shower particles along their path in the atmosphere. We have made a precise measurement of the fluorescence light spectrum excited by MeV electrons in dry air. We measured the relative intensities of 34 fluorescence bands in the wavelength range from 284 to 429 nm with a high resolution spectrograph. The pressure dependence of the fluorescence spectrum was also measured from a few hPa up to atmospheric pressure. Relative intensities and collisional quenching reference pressures for bands due to transitions from a common upper level were found in agreement with theoretical expectations. The presence of argon in air was found to have a negligible effect on the fluorescence yield. We estimated that the systematic uncertainty on the cosmic ray shower energy due to the pressure dependence of the fluorescence spectrum is reduced to a level of 1% by the AIRFLY results presented in this paper
The analyzing powers of ϩ and Ϫ were measured using an incident 22-GeV/c transversely polarized proton beam at the Brookhaven Alternating Gradient Synchrotron. A magnetic spectrometer measured Ϯ inclusive asymmetries on a hydrogen and a carbon target. An elastic polarimeter with a CH 2 target measured pp elastic-scattering asymmetries to determine the beam polarization using published data for the pp elastic analyzing power. Using the beam polarization determined from the elastic polarimeter and asymmetries from the inclusive spectrometer, analyzing powers A N for Ϯ were determined in the x F and p T ranges (0.45-0.8) and (0.3-1.2 GeV/c), respectively. The analyzing power results are similar in both sign and character to other measurements at 200 and 11.7 GeV/c, confirming the expectation that high-energy pion inclusive analyzing powers remain large and relatively energy independent. This suggests that pion inclusive polarimetry may be a suitable method for measuring future beam polarizations at BNL RHIC or DESY HERA. Analyzing powers of ϩ and Ϫ produced on hydrogen and carbon targets are the same. Various models to explain inclusive analyzing powers are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.