In this paper we study the numerical methods for Fuzzy Differential equations by an application of the Runge-Kutta Verner method for fuzzy differential equations. We prove a convergence result and give numerical examples to illustrate the theory.
The aim of this paper is to study the asymptotic behaviour of some low-cost control problems in periodically perforated domains with Neumann condition on the boundary of the holes. The optimal control problems considered here are governed by a second order elliptic boundary value problem with oscillating coefficients. It is assumed that the cost of the control is of the same order as that describing the oscillations of the coefficients. The asymptotic analysis of small cost problem is more delicate and need the H-convergence result for weak data. In this connection, an H-convergence result for weak data under some hypotheses is also proved.
We study the homogenization of a class of optimal control problems whose state equations are given by second order elliptic boundary value problems with oscillating coefficients posed on perforated and non-perforated domains. We attempt to describe the limit problem when the cost of the control is also of the same order as that describing the oscillations of the coefficients. We study the situations where the control and the state are both defined over the entire domain or when both are defined on the boundary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.