1. The phosphomannan of Saccharomyces cerevisiae was released by Pronase digestion of cell walls and isolated by chromatography on DEAE-cellulose or by precipitation with borate-Cetavlon solutions. Mannose and phosphorus were present in the molar ratio 18:1 and the phosphate groups were in the diester form. 2. Hydrolysis with acid gave mannose 6-phosphate. Under mild acid conditions (autohydrolysis) the phosphate groups were converted into the monoester form, mannose was released and the molecular size of the phosphomannan was substantially decreased. 3. Hydrolysis with alkali also gave a monoester phosphate and a similar decrease in molecular weight. Under mild alkaline conditions the serine and threonine content of the phosphomannan was decreased by about 80%. The phosphate content was not altered. 4. Treatment with 40% (v/v) HF removed 70% of the phosphorus from the phosphomannan with no detectable decrease in molecular weight. 5. Periodate oxidation gave an oxophosphomannan from which 80% of the phosphorus was eliminated under mild alkaline conditions. 6. The properties of the phosphomannan are consistent with a structure in which the phosphate groups are located on the outside of the molecule and link C-1 of a terminal mannose unit with C-6 of another mannose unit, which is in turn attached to the polysaccharide backbone of the molecule. 7. The implications of this structure are discussed in relation to flocculation.
We have obtained evidence for two structurally and antigenically different Saccharomyces cerevisiae cell wall mannans. One, which occurs widely and is found in S. cerevisiae strain 238C, is already known to be a neutral mannan which yields mannose, mannobiose, mannotriose, and mannotetraose on acetolysis of the (1 a 6)-linked backbone. The other, which was found in S. cerevisiae brewer's strains, is a phosphomannan with a structure very similar to that of Kloeckera brevis mannan. S. cerevisiae (brewer's yeast strain) was agglutinated by antiserum prepared against Kloeckera brevis cells. The mannan, isolated from a proteolytic digest of the cell wall of the former, did not react with S. cerevisiae 238C antiserum, whereas it cross-reacted strongly with K. brevis antiserum. Controlled acetolysis cleaved the (1 6
Incubation with ethanol, which is readily oxidized, also causes increases in these enzyme activities. These increases occur more quickly than with acetate or pyruvate, probably because ethanol can, in being oxidized to acetate, serve as an immediate source ofenergy (Maitra & Estabrook, 1967). Thus this yeast has an active tricarboxylic acid cycle and oxidative pathways. However, there is a lag before acetate is oxidized linearly. Inhibition of cytoplasmic protein synthesis completely prevents adaptation, and the activities of a number of relevant enzymes, especially isocitrate lyase, increase during adaptation. Consequently it is probable that the activity of some enzyme or enzymes, such as those above, is directly or indirectly limiting for acetate oxidation but not for the oxidation of ethanol or pyruvate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.