Aluminium is still one of the most important contact metallisations for power electronic chips like MOSFETs or IGBTs. With a large difference in thermal expansion coefficients (CTEs) between aluminium and silicon and the temperatures generated in hot-spots during high power transients, these layers are prone to failure due to thermo-mechanical fatigue.So far, lifetime modelling was done by subjecting dedicated test specimens to the thermal cycling one would expect during normal operation. This paper will propose a novel method for creating accelerated lifetime models of thin aluminium films within the high-cycle fatigue regime by isothermal mechanical loads. The specially designed test stand is suggested to complement or replace expensive and lengthy thermal cycling and allow in-situ monitoring of failure indicators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.