The study under investigation focuses on in vitro antiproliferative efficacy of the flavonoid morin and the mechanisms by which it inhibits the growth of colon cancer using SW480 colon cancer cells with emphasis on Warburg effect. It was found that the cell proliferation was significantly inhibited by morin in a dose and time dependent manner. Morin induced apoptosis that was correlated with increased levels of reactive oxygen species formation and loss of mitochondrial membrane potential of the cells. In addition, an increase in cleaved PARP, cleaved caspase 3, cleaved caspase 8, cleaved caspase 9 and Bax as well as a decrease in Bcl 2 was observed, indicating morin is inducing both intrinsic as well as extrinsic pathway of apoptosis. This was further confirmed by using downstream caspase 3 inhibitor which indicated that caspase 3 inhibition reduces morin induced cell death. Moreover, the impact of morin on over all energy status when determined in terms of total cellular ATP level showed a decline with low level of glucose uptake and Glut1 expression. The results indicate that morin exerts antiproliferative activity by inducing apoptosis and by reducing Warburg effect in the evaluated cell lines and provide preliminary evidence for its anticancer activity.
BACKGROUND: 'Phytonutrients' have been reported to exert an incredible impact on the healthcare system and offer medical benefits including the prevention or treatment of lifestyle-associated diseases. We chose one of the most common and important plant families, Musaceae, for our present study and explored its antidiabetic potential.
RESULTS: Seeds of the edible fruits of Musa balbisianaColla. were investigated for their antidiabetic potential. After estimating the proximate composition, the seeds were extracted with various solvents and evaluated for antidiabetic potential in terms of the inhibition of digestive enzymes, antiglycation activity and in vitro glucose uptake. The acetone extract demonstrated the highest inhibition of -amylase and -glucosidase enzymes with IC 50 values of 36.67 ± 0.367 and 100.61 ± 0.707 g mL -1 , respectively. The extract also exhibited significant glycation inhibition with an IC 50 value of 86.48 ± 0.751 g mL -1 . Furthermore, a major phytochemical, apiforol, was isolated from the acetone extract for the first time, which demonstrated promising -glucosidase inhibition (IC 50 = 48.25 ± 0.255 mol L -1 ), antiglycation property (IC 50 = 114.23 ± 0.567 mol L -1 ) and enhanced glucose uptake in L6 myoblasts. In molecular docking studies, apiforol efficiently bonded to the active sites of -glucosidase enzyme 3A4A.
CONCLUSIONS:As dietary intervention is one of the effective strategies for addressing diabetes, special attention is always given to natural food bio-actives or agro-products for better human health. The results of our study suggest that Musa balbisiana has significant potential as an ingredient in health food formulations by reducing postprandial hyperglycaemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.