The aim of the study was to investigate whether parity-specific phenotypes provide a clearer picture of quantitative trait loci (QTL) affecting calving traits in German Holsteins than breeding values estimated across parities. In experiment I, approximate daughter yield deviations were calculated by applying a univariate sire model assuming unrelated sires used as phenotypes in a QTL mapping study. These results were compared with those obtained using deregressed estimated breeding values obtained from the routine German sire evaluation (experiment II). In experiment I, 17 chromosome-wise significant QTL were found for the first parity, but only 12 for the second parity. Only three QTL for maternal stillbirth, located on BTA7, 15 and 23, showed an experiment-wise significance. Experiment II revealed 15 chromosome-wise significant QTL. The results differed markedly between first and second parity within experiment I, as well as between experiment I and II. The present study showed that parity-specific daughter yield deviations are beneficial for mapping QTL for calving traits. Furthermore, it is expected that the use of sharper phenotypes will also be advantageous for QTL fine mapping and the identification of candidate genes.
The metabolic status of cows is important to health and fertility, especially in early lactation, and energy balance (EB) and fat/protein ratio (FPR) are considered as appropriate indicators for metabolic disorders. The aim of this study was to detect SNPs (single nucleotide polymorphisms) associated with EB and FPR in German Holstein bull dams belonging to the research herd Karkendamm. Bull dams were genotyped using the Illumina Bovine SNP 50K Bead chip(®) comprising 54 001 SNPs. A total of 43 593 SNPs and 586 (EB) and 668 (FPR) bull dams passed the quality control criteria. Phenotypes were deregressed breeding values estimated via random regression animal models for lactation days 11, 20, 30, and 42 for EB and FPR. Whole-genome association analyses were carried out fitting principal components as covariates to adjust for genetic substructure. Permutation tests were applied to estimate genome-wise significance. Across all observed lactation days, 19 SNPs located in four different intervals on chromosomes 1, 14, 16, and 27 were detected. For EB, seven markers across four chromosomes were identified. There was no overlap between markers associated with FPR and EB. SNPs associated with FPR were mostly located in QTL regions for milk production traits, especially in the region of DGAT1, whereas SNPs associated with EB mainly showed positional relationships to previously described QTL regions affecting functional traits, especially fertility.
Linkage, linkage disequilibrium, and combined linkage and linkage disequilibrium analyses were performed to map quantitative trait loci (QTL) affecting calving and conformation traits on Bos taurus autosome 18 (BTA18) in the German Holstein population. Six paternal half-sib families consisting of a total of 1,054 animals were genotyped on 28 genetic markers in the telomeric region on BTA18 spanning approximately 30 Mb. Calving traits, body type traits, and udder type traits were investigated. Using univariately estimated breeding values, maternal and direct effects on calving ease and stillbirth were analyzed separately for first- and further-parity calvings. The QTL initially identified by separate linkage and linkage disequilibrium analyses could be confirmed by a combined linkage and linkage disequilibrium analysis for udder composite index, udder depth, fore udder attachment, front teat placement, body depth, rump angle, and direct effects on calving ease and stillbirth. Concurrence of QTL peaks and a similar shape of restricted log-likelihood ratio profiles were observed between udder type traits and for body depth and calving traits, respectively. Association analyses were performed for markers flanking the most likely QTL positions by applying a mixed model including a fixed allele effect of the maternally inherited allele and a random polygenic effect. Results indicated that microsatellite marker DIK4234 (located at 53.3 Mb) is associated with maternal effects on stillbirth, direct effects on calving ease, and body depth. A comparison of effects for maternally inherited DIK4234 alleles indicated a favorable, positive correlation of maternal and direct effects on calving. Additionally, the association of maternally inherited DIK4234 marker alleles with body depth implied that conformation traits might provide the functional background of the QTL for calving traits. For udder type traits, the strong coincidence of QTL peaks and the position of the QTL in a region previously reported to harbor QTL for somatic cell score indicated that effects of QTL for udder type traits might be correlated with effects of QTL for udder health traits on BTA18. Our results suggest that loci in the middle to telomeric region on BTA18 with effect on conformation traits may also contribute to the genetic variance of calving and udder health traits. Further analyses are required to identify the causal mutations affecting conformation and calving traits and to investigate the correlation of effects for loci associated with conformation, calving, and udder health traits.
The bovine placental growth factor-encoding gene (PGF) was analysed as a positional and functional candidate gene for the maternal effect on stillbirth and calving ease in first parity. Prominent levels of PGF expression have been reported for the whole human placenta and umbilical vein endothelial cells. Modulation of angiogenesis, vessel remodelling and vascular permeability during implantation and placentation suggest an influence on trophoblast function during pregnancy. Changes of expression or protein function may therefore be crucial to pregnancy and parturition. By comparative sequencing of bulls with extreme approximate daughter yield deviations for calving traits, we identified 37 SNPs and two insertions/deletions within the PGF gene. Seventeen of the identified polymorphisms were genotyped in 368 selected bulls and tested for association with approximate daughter yield deviations for calving traits. In a single marker analysis, all SNPs were significantly associated with maternal stillbirth and calving ease first parity. The allele substitutions of the significant SNPs explain 8% to 14% and 8% to 15% of the additive genetic variance for maternal stillbirth and maternal calving ease first parity, respectively. There is no evidence that any of the polymorphisms identified within this study could be the causal mutation underlying the QTL, which is likely to be a regulatory mutation. In summary, we report polymorphisms in the bovine PGF gene significantly associated with the maternal effect on stillbirth and calving ease in animals under selection. These results should be confirmed and extended in further studies to identify the causal mutation underlying the QTL analysed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.