Purpose
The purpose of this paper is to study the flow, heat and mass transfer of MHD Casson nanofluid due to an inclined stretching sheet using similarity transformation, the governing PDE’S equations of flow, heat and mass transfer are converted into ODE’S. The resulting non-linear ODE’S are solved numerically using an implicit finite difference method, which is known as Kellor-box method. The effects of various governing parameters on velocity, temperature and concentration are plotted for both Newtonian and non-Newtonian cases. The numerical values of skin friction, Nusselt number and Sherwood number are calculated and tabulated in various tables for different values of physical parameters. It is noticed that the effect of angle of inclination enhances the temperature and concentration profile whereas velocity decreases. The temperature decreases due to the increase in the parametric values of Pr and Gr due to thickening in the boundary layer.
Design/methodology/approach
Numerical method is applied to find the results.
Findings
Flow and heat transfer analysis w.r.t various flow and temperature are analyzed for different values of the physical parameters.
Research limitations/implications
The numerical values of skin friction, Nusselt number and Sherwood number are calculated and tabulated in various tables for different values of physical parameters.
Practical implications
The study of the boundary layer flow, heat and mass transfer is important due to its applications in industries and many manufacturing processes such as aerodynamic extrusion of plastic sheets and cooling of metallic sheets in a cooling bath.
Originality/value
Here in this paper the authors have investigated the MHD boundary layer flow of a Casson nanofluid over an inclined stretching sheet along with the Newtonian nanofluid as a limited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.