The strength of the textile bonded seams was analyzed. Two or more fabric layers joining are based on use of base layers structural properties and thermoplastic properties of adhesive film used for bonding. Five commercial produced fabrics of different structure (woven, knitted, laminate) and fiber content (polyester, cotton, flax) were used in this experiment. Thermoplastic polyurethane film was transferred from the base of silicone to fabric using 160 °C temperature and 10 seconds pressing duration. Fabric layers were bonded using 180 °C temperature and 30 seconds pressing duration. The strength of textile bonded seams was investigated using four different bond types, in order to determine method suitable for the analyzes of bonded seams of knitted fabrics and method suitable to analyze woven fabrics.
In production of garments, embroidery carries out a variety of functions, one of which is the aesthetic appearance of the product improvement. The resulting defects, are seen as a negative indicator of the product quality. The discrepancy of the embroidered element to the digital design in size is a defect, which is influenced by the embroidery threads, embroidery materials properties and process parameters. The fabric sorrounded by the embroidery threads between adjancent needle penetrations inside of the embroidered element is compressed, buckling. The aim of this paper is to investigate the influence of the properties of embroidery threads on buckling of fabric inside of the embroidered element. For investigations specimens were prepared using different fibre composition, density and linear structure of the embroidery threads. Specimens were cut and photo-captured at the beginning, middle and end of the embroidered element. It was found, that different properties of the embroidery threads affecting on the different behavior of fabric inside of the embroidered element. The results of the investigations showed that the fabric inside of the embroidered element formed larger waves of buckling using the maximum elongation of the feedback exhibiting embroidery thread.
Various clothes treatments during their manufacture and wear change the fabrics physical and surface characteristics. The different testing methods for fabrics quality evaluation are used in this research. The aim of this work is to examine the effect of enzyme treatment, laundering and abrasion on the appearance of different cellulosic fabrics. Six cotton and cotton blend woven fabrics used for faded garments production were chosen for this examination. Treatments such, as enzyme wash, domestic laundering, abrasion using IT-2 and Martindale (Mesdan) instruments and rubbing were applied in order to evaluate the worn look of the different fabrics. The degree of fabrics distortion was determined by using abrasion resistance and weight change characteristics. Also, the colour fastness and staining after different dry and wet treatments were analysed. The results of this research show that the surface characteristics of cellulosic fabrics depend on the properties of the fabrics and the type of treatment. Most of the tested cellulosic fabrics have changed their difference in colour not only after the enzyme wash but also after successive abrading and cyclical domestic launderings. Both colour fading of the fabrics and staining of cotton white fabric may appear after rubbing in dry and especially in wet conditions. The received results show that during tested fabrics laundering, the cotton and nylon parts of multifibre fabric were stained more heavily.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.