The ongoing COVID‐19 pandemic caused by SARS‐CoV‐2 is associated with high morbidity and mortality. This zoonotic virus has emerged in Wuhan of China in December 2019 from bats and pangolins probably and continuing the human‐to‐human transmission globally since last two years. As there is no efficient approved treatment, a number of vaccines were developed at an unprecedented speed to counter the pandemic. Moreover, vaccine hesitancy is observed that may be another possible reason for this never ending pandemic. In the meantime, several variants and mutations were identified and causing multiple waves globally. Now the safety and efficacy of these vaccines are debatable and recommended to determine whether vaccines are able to interrupt transmission of SARS‐CoV‐2 variant of concern (VOC). Moreover, the VOCs continue to emerge that appear more transmissible and less sensitive to virus‐specific immune responses. In this overview, we have highlighted various drugs and vaccines used to counter this pandemic along with their reported side effects. Moreover, the preliminary data for the novel VOC “Omicron” are discussed with the existing animal models.
In this study, a platinum(II) complex ([Pt(H2L)(PPh3)] complex) containing a thiocarbohydrazone as the ligand was tested as an anti-proliferative agent against ovarian adenocarcinoma (Caov-3) and human colorectal adenocarcinoma (HT-29) through MTT assays. Apoptotic markers were tested by the AO/PI double staining assay and DNA fragmentation test. Flow cytometry was conducted to measure cell cycle distribution, while the p53 and caspase-8 pathways were tested via immunofluorescence assay. Results demonstrated that the cytotoxic effect of the Pt(II)-thiocarbohydrazone complexes against Caov-3 and HT-29 cells was highly significant, and this effect triggered the activation of the p53 and caspase-8 pathways. Besides, apoptosis stimulated by the Pt(II)-thiocarbohydrazone complex was associated with cell cycle arrest at the G0/G1 phase. These findings suggest that the target complex inhibited the proliferation of Caov-3 and HT-29 cells, resulting in the arrest of the cell cycle and induction of apoptosis via the stimulation of the p53 and caspase-8 pathways. The present data suggests that the Pt(II)-thiocarbohydrazone complex could also be a promising chemotherapeutic agent for other types of cancer cells.
The anticancer studies of a Schiff base; (E)-2((2-hydroxybenzylidene)amino-3-mercaptopropanoic acid (H 2 L) (obtained from 2hydroxybenzaldehyde and L-cysteine) and its transition metal complexes have been reported. The evaluation of the growth inhibitory action was studied for the compounds against human colon carcinoma (HCT-116), human hepatocellular liver carcinoma (HEPG-2), normal melanocytes (HFB-4) and human breast carcinoma (MCF-7) cell lines. The obtained results revealed that the Schiff base and its chelates are active against human hepatocellular liver carcinoma (HEPG-2) cell lines. The powder X-ray diffraction analysis for the compounds was carried out through Phillips X'Pert High score software. The density functional theory computation for ligand and Co(II), Ni (II) and Cu(II) metal complexes were made to understand the mode of bonding by GAUSSIAN 03 rev. A.01 programme. The quantitative structure-activity relationship investigation was performed by using HyperChem Professional 8.0.3 software to understand the biological potency of the ligands. Moreover, a docking analysis using iGEMDOCKv2.1 software was carried out against the kinase enzyme PDB ID:1fvv.[a] M. M. El-ajaily, R. N. Eldaghare
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.