Liquid water is one of the most important materials affecting the climate and habitability of a terrestrial planet. Liquid water vaporizes entirely when planets receive insolation above a certain critical value, which is called the runaway greenhouse threshold. This threshold forms the inner most limit of the habitable zone. Here we investigate the effects of the distribution of surface water on the runaway greenhouse threshold for Earth‐sized planets using a three‐dimensional dynamic atmosphere model. We considered a 1 bar atmosphere whose composition is similar to the current Earth's atmosphere with a zonally uniform distribution of surface water. As previous studies have already showed, we also recognized two climate regimes: the land planet regime, which has dry low‐latitude and wet high‐latitude regions, and the aqua planet regime, which is globally wet. We showed that each regime is controlled by the width of the Hadley circulation, the amount of surface water, and the planetary topography. We found that the runaway greenhouse threshold varies continuously with the surface water distribution from about 130% (an aqua planet) to 180% (the extreme case of a land planet) of the present insolation at Earth's orbit. Our results indicate that the inner edge of the habitable zone is not a single sharp boundary, but a border whose location varies depending on planetary surface condition, such as the amount of surface water. Since land planets have wider habitable zones and less cloud cover, land planets would be good targets for future observations investigating planetary habitability.
We present spectropolarimetry of the Type Ic supernova SN 2002ap and give a preliminary analysis: the data were taken at two epochs, close to and one month later than the visual maximum (2002 February 8). In addition we present June 9 spectropolarimetry without analysis. The data show the development of linear polarization. Distinct polarization profiles were seen only in the O I λ7773 multiplet/Ca II IR triplet absorption trough at maximum light and in the O I λ7773 multiplet and Ca II IR triplet absorption troughs a month later, with the latter showing a peak polarization as high as ∼ 2 %. The intrinsic polarization shows three clear position angles: 80 • for the February continuum, 120 • for the February line feature, and 150 • for the March data. We conclude that there are multiple asymmetric components in the ejecta. We suggest that the supernova has a bulk asymmetry with an axial ratio projected on the sky that is different from 1 by of order 10 %. Furthermore, we suggest very speculatively that a high velocity ejecta component moving faster than ∼ 0.115c (e.g., a jet) contributes to polarization in the February epoch.
When planets receive insolation above a certain critical value called the runaway threshold, liquid surface water vaporizes completely, which forms the inner edge of the habitable zone. Because land planets can emit a large amount of radiation from the dry tropics, they have a higher runaway threshold than aqua planets do. Here we systematically investigated the runaway threshold for various surface water distributions using a three‐dimensional dynamic atmosphere model. The runaway threshold for the meridionally uniform surface water distribution increases from the typical value for the aqua planet regime (~130% S0) to one for the land planet regime (~155% S0) as the dry surface area increases, where S0 is the present Earth's insolation. Although this result is similar to the previous work considering zonally uniform surface water distributions, the runaway threshold for the land planet regime is quite low compared to that of the previous work. This is because a part of the tropical atmosphere is always wet for the meridionally uniform case. We also considered the surface water distributions determined by the Earth's, Mars's, and Venus's topographies. We found that their runaway thresholds are close to that for the meridionally uniform cases, and the amount of water at the boundary between an aqua planet regime and land planet regime is around 10% of the Earth's ocean. This clearly shows that the runaway threshold is not determined uniquely by the luminosity of the central star, but it has a wide range caused by the surface water distribution of the terrestrial water planet itself.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.