N-Glycosylation of human beta1,3N-acetylglucosaminyltransferase 2 (beta3GnT2) is essential for its biological function. beta3GnT2 fused to GFP(uv) (GFP(uv)-beta3GnT2) was produced by non-virus expression systems in stably transformed insect cells and silkworm larvae using a recombinant BmNPV bacmid, and purified for analysis of N-glycosylation. The N-glycan structure of beta3GnT2 was identified by glycoamidase A digestion, labeling with 2-aminopyridine (PA), and HPLC mapping. The paucimannosidic N-glycan structure (73.2%) was predominant in stably transformed Trichoplusia ni cells. In contrast, N-glycan with Gal (21.3%) and GlcNAc (16.2%) terminal residues linked to Manalpha(1,3) branch were detected on beta3GnT2 expressed in silkworm larvae. The presence of terminal Gal and bisecting GlcNAc residues such as Galbeta1, 4GlcNAcbeta1, 2Manalpha1,3(GlcNAcbeta1,4)(Manalpha1,6)Manbeta1, 4GlcNAc is not typical structure for lepidopteran insect N-glycosylation. Although allergenic alpha1,3-fucose residues have been found in T. ni cells, only alpha1,6-fucose residues were attached to the beta3GnT2 glycan in silkworm larvae. Therefore, silkworm larvae might be a useful host for producing human glycoproteins.
Human 29IJ6 IgG was expressed in silkworm using a Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid system. The mean amounts of 296IJ6 IgG produced in larval hemolymph and whole pupae were 30.1 microg/larva and 78.0 microg/pupa, respectively. The use of molecular chaperones including calreticulin (CRT), calnexin (CNX), and immunoglobulin heavy chain binding protein (BiP, GRP78) improved the production of 296IJ6 IgG secretion in the larvae fivefold. The total yield of recombinant 29IJ6 IgG was 239 microg/mL when coexpressed with CRT. However, the overexpression of molecular chaperones had negative effects on secretion. The N-linked glycans of secreted 296IJ6 IgG in silkworm hemolymph were dominated by paucimannose structures. Small amounts of GlcNAc residues linked to the Manalpha1,3 branch were detected. When molecular chaperones were coexpressed, the compositions of N-linked glycans in the IgG1 produced were unchanged compared with those produced without them. This suggests that N-glycosylation is controlled by a regulatory function in the Golgi apparatus even though the post-translational modification of 296IJ6 IgG was assisted by the coexpression of molecular chaperones. Therefore, if the glycosylation pathways that coexpress N-acetylglucosaminyltransferase, galactosyltransferase, and sialyltransferase could be improved, silkworm larvae might prove a useful system for producing human antibodies.
The baculovirus expression system has been used to produce large amounts of biologically active proteins by infecting insect cells with a recombinant baculovirus expressing the target protein. For an efficient expression of the target protein, it is necessary to infect insect cells with an adequate amount of virus. However, current methods are time-consuming and either have technical difficulties or are limited as a result of virus expression mechanism using a reporter gene. A novel method is developed to yield virus titers in 10 h that is easy to perform using 96-well plates and applicable to both any Autographa californica nucleopolyhyderovirus (AcNPV) and Bombyx mori nucleopolyhedrovirus (BmNPV)-based recombinant baculovirus. This assay uses an antibody to a DNA-binding protein to detect the infected cells via immunostaining. The titer is determined by counting foci produced as a result of infection of the virus under a fluorescent microscope. The required incubation period was shortened considerably because infected cells expressed viral antigens at the post-infection time of 4 h. Therefore, 10 h was enough to estimate the virus titer including virus infection time, insect cell culture, and estimation of virus titer. Titers determined using this immunological assay are comparable, both in value and validity, to those obtained using a traditional method, provided that the stocks have titers above 10(3) pfu/mL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.