Hypervelocity ejection of material by impact spallation is considered a plausible mechanism for material exchange between two planetary bodies. We have modeled the spallation process during vertical impacts over a range of impact velocities from 6 to 21 km/s using both grid-and particle-based hydrocode models. The Tillotson equations of state, which are able to treat the nonlinear dependence of density on pressure and thermal pressure in the strongly shocked matter, were used to study the hydrodynamicthermodynamic response after impacts. The effects of material strength and gravitational acceleration were not considered. A two-dimensional time-dependent pressure field within a 1.5-fold projectile radius from the impact point was investigated in cylindrical coordinates to address the generation of spalled material. A resolution test was also performed to reject ejected materials with peak pressures that were too low due to artificial viscosity. The relationship between ejection velocity v eject and peak pressure P peak was also derived. Our approach shows that "late-stage acceleration" in an ejecta curtain occurs due to the compressible nature of the ejecta, resulting in an ejection velocity that can be higher than the ideal maximum of the resultant particle velocity after passage of a shock wave. We also calculate the ejecta mass that can escape from a planet like Mars (i.e., v eject > 5 km/s) that matches the petrographic constraints from Martian meteorites, and which occurs when P peak = 30-50 GPa.Although the mass of such ejecta is limited to 0.1-1 wt% of the projectile mass in vertical impacts, this is sufficient for spallation to have been a plausible mechanism for the ejection of Martian meteorites. Finally, we propose that impact spallation is a plausible mechanism for the generation of tektites.
[1] We systematically conducted impact cratering experiments with sedimentary rocks at 0.8-7.1 km/s using various projectiles with 1.1-15 g/cm 3 in density. The crater diameter, depth, and volume are investigated and compared with the results for igneous rocks. Then, using the non-dimensional parameters, the normalized crater diameter p D , the normalized depth p d , the normalized volume p V , the target strength per specific energy p 3 , and the target and projectile density ratio p 4 , the scaling laws,
Knowledge of the shock behavior of planetary materials is essential to interpret shock metamorphism documented in rocks at hypervelocity impact structures on Earth, in meteorites, and in samples retrieved in space missions. Although our understanding of shock metamorphism has improved considerably within the last decades, the effects of friction and plastic deformation on shock metamorphism of complex, polycrystalline, non‐porous rocks are poorly constrained. Here, we report on shock‐recovery experiments in which natural granite was dynamically compressed to 0.5–18 GPa by singular, hemispherically decaying shock fronts. We then combine petrographic observations of shocked samples that retained their pre‐impact stratigraphy with distributions of peak pressures, temperatures, and volumetric strain rates obtained from numerical modeling to systematically investigate progressive shock metamorphism of granite. We find that the progressive shock metamorphism of granite observed here is mainly consistent with current classification schemes. However, we also find that intense shear deformation during shock compression and release causes the formation of highly localized melt veins at peak pressures as low as 6 GPa, which is an order of magnitude lower than currently thought. We also find that melt veins formed in quartz grains compressed to >10–12 GPa contain the high‐pressure silica polymorph stishovite. Our results illustrate the significance of shear and plastic deformation during hypervelocity impact and bear on our understanding of how melt veins containing high‐pressure polymorphs form in moderately shocked terrestrial impactites or meteorites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.