The electronic circular dichoism (ECD) of L-alanine in the vacuum-ultraviolet region was calculated for various optimized structures using time-dependent density functional theory (TDDFT) to assign the CD spectrum observed experimentally in aqueous solution down to 140 nm [Matsuo, et al. Chem. Lett. 2002, 826]. The structure of L-alanine in vacuo was optimized using density functional theory (DFT) at the B3LYP/6-31G* level. Its hydrated structure was optimized with nine water molecules (six and three around carboxyl and amino groups, respectively) using DFT and a continuum model (Onsager model). The dihedral angles of carboxyl and amino groups in the optimized hydrated structure differed greatly from those in the crystal and in nonhydrated structures optimized using a continuum model only. The ECD spectrum calculated for the hydrated structure had two successive positive peaks with molar ellipticities of about 2000 deg cm2 dmol(-1) at around 205 and 185 nm, which were close to those observed experimentally. These positive peaks were attributable to n pi* transitions of the carboxyl group, with the latter peak also influenced by the pi pi* transition of the carboxyl group that originates below 175 nm. A small negative peak observed at around 252 nm was also predicted from the hydrated structure. These results demonstrate that the hydrated water molecules around the zwitterions play a crucial role in stabilizing the conformation of L-alanine in aqueous solution and that TDDFT is useful for the ab initio assignment of ECD spectra down to the vacuum-ultraviolet region.
We succeeded in constructing a vacuum-ultraviolet circular dichroism (VUVCD) spectrophotometer with a small-scale synchrotron radiation source (0.7 GeV) at Hiroshima Synchrotron Radiation Center (HiSOR). This VUVCD system revealed for the first time the CD spectra of amino acids in aqueous media in the 310–140 nm region under high vacuum. These data, which cannot be observed by any types of existing CD spectrophotometers, now open a new field in the structural analysis of biomaterials on a basis of the higher energy transition of chromophores.
The electronic circular dichroism (ECD) spectra of three L-hydroxy acids (L-lactic acid, (1)-(S)-2-hydroxy-3-methylbutyric acid, and (2)-(S)-2-hydroxyisocaproic acid) were measured down to 160 nm in aqueous solution using a vacuum-ultraviolet ECD spectrophotometer. To assign the two positive peaks around 210 and 175 nm and the one negative peak around 190 nm in the observed spectra, the ECD spectrum of L-lactic acid was calculated using time-dependent density functional theory (DFT) for the optimized structures by DFT and a continuum model. The observed ECD spectrum was successfully reproduced as the average spectrum for four optimized structures with seven water molecules that localized around the COO 2 and OH groups of L-lactic acid. The positive peak around 210 nm and the negative peak around 185 nm in the calculated spectrum were attributable to the np* transition of the carboxyl group, with the latter peak also being influenced by the pp* transition of the carboxyl group; however, the positive peak around 165 nm involved unassignable higher energy transitions. The comparison of the calculated ECD spectra for L-lactic acid and L-alanine revealed that the network with loose hydrogen bonding around the COO 2 and OH groups is responsible for the flexible conformation of hydroxy acids and complicated side-chain dependence of ECD spectra relative to amino acids. Chirality 23:E52-E58, 2011. V
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.