Transcription factors involved in the specification and differentiation of neurons often continue to be expressed in the adult brain, but remarkably little is known about their late functions. Nurr1, one such transcription factor, is essential for early differentiation of midbrain dopamine (mDA) neurons but continues to be expressed into adulthood. In Parkinson's disease, Nurr1 expression is diminished and mutations in the Nurr1 gene have been identified in rare cases of disease; however, the significance of these observations remains unclear. Here, a mouse strain for conditional targeting of the Nurr1 gene was generated, and Nurr1 was ablated either at late stages of mDA neuron development by crossing with mice carrying Cre under control of the dopamine transporter locus or in the adult brain by transduction of adeno-associated virus Cre-encoding vectors. Nurr1 deficiency in maturing mDA neurons resulted in rapid loss of striatal DA, loss of mDA neuron markers, and neuron degeneration. In contrast, a more slowly progressing loss of striatal DA and mDA neuron markers was observed after ablation in the adult brain. As in Parkinson's disease, neurons of the substantia nigra compacta were more vulnerable than cells in the ventral tegmental area when Nurr1 was ablated at late embryogenesis. The results show that developmental pathways play key roles for the maintenance of terminally differentiated neurons and suggest that disrupted function of Nurr1 and other developmental transcription factors may contribute to neurodegenerative disease.
2-((1E,3E)-4-(6-( 11 C-methylamino)pyridin-3-yl)buta-1,3-dienyl) benzo [d]thiazol-6-ol ( 11 C-PBB3) is a clinically useful PET probe that we developed for in vivo imaging of tau pathology in the human brain. To ensure the availability of this probe among multiple PET facilities, in the present study we established protocols for the radiosynthesis and quality control of 11 C-PBB3 and for the characterization of its photoisomerization, biodistribution, and metabolism. Methods: 11 C-PBB3 was synthesized by reaction of the tert-butyldimethylsilyl desmethyl precursor (1) with 11 C-methyl iodide using potassium hydroxide as a base, followed by deprotection. Photoisomerization of 11 C-PBB3 under fluorescent light was determined. The biodistribution and metabolite analysis of 11 C-PBB3 was determined in mice using the dissection method. Results: 11 C-PBB3 was synthesized with 15.4% ± 2.8% radiochemical yield (decay-corrected, n 5 50) based on the cyclotron-produced 11 C-CO 2 and showed an averaged synthesis time of 35 min from the end of bombardment. The radiochemical purity and specific activity of 11 C-PBB3 were 98.0% ± 2.3% and 180.2 ± 44.3 GBq/μmol, respectively, at the end of synthesis (n 5 50). 11 C-PBB3 showed rapid photoisomerization, and its radiochemical purity decreased to approximately 50% at 10 min after exposure to fluorescent light. After the fluorescent light was switched off, 11 C-PBB3 retained more than 95% radiochemical purity over 60 min. A suitable brain uptake (1.92% injected dose/g tissue) of radioactivity was observed at 1 min after the probe injection, which was followed by rapid washout from the brain tissue. More than 70% of total radioactivity in the mouse brain homogenate at 5 min after injection represented the unchanged 11 C-PBB3, despite its rapid metabolism in the plasma. Conclusion: 11 C-PBB3 was produced with sufficient radioactivity and high quality, demonstrating its clinical utility. The present results of radiosynthesis, photoisomerization, biodistribution, and metabolite analysis could be helpful for the reliable production and application of 11 C-PBB3 in diverse PET facilities.
The upper part of a nodulated soybean root hydroponically cultured in a glass bottle was monitored using a computer microscope under controlled environmental conditions, and the diameter of individual nodules was measured from 10-24 d after planting. The diameter of a root nodule attached to the primary root increased from 1 mm to 6 mm for 2 weeks under nitrogen-free conditions. The increase in diameter of the nodules was almost completely stopped after 1 d of supplying 5 mM nitrate, and was due to the cessation of nodule cell expansion. However, nodule growth quickly returned to the normal growth rate following withdrawal of nitrate from the solution. The reversible depression of nodule growth by nitrate was similar to the restriction of photoassimilate supply by continuous dark treatment for 2 d followed by normal light/dark conditions. In addition, the inhibitory effect of nitrate was partially alleviated by the addition of 3% (w/v) sucrose to the medium. Plant leaves were exposed to (11)C or (14)C-labelled carbon dioxide to investigate the effects of 5 mM nitrate on the translocation and distribution of photosynthates to nodules and roots. Supplying 5 mM nitrate stimulated the translocation rate and the distribution of labelled C in nitrate-fed parts of the roots. However, the (14)C partitioning to nodules decreased from 9% to 4% of total (14)C under conditions of 5 mM nitrate supply. These results indicate that the decrease in photoassimilate supply to nodules may be involved in the quick and reversible nitrate inhibition of soybean nodule growth.
To develop a positron emission tomography (PET) ligand for imaging the 'peripheral benzodiazepine receptor' (PBR) in brain and elucidating the relationship between PBR and brain diseases, four analogues (4-7) of N-(2,5-dimethoxybenzyl)-N-(5-fluoro-2-phenoxyphenyl)acetamide (2) were synthesized and evaluated as ligands for PBR. Of these compounds, fluoromethyl (4) and fluoroethyl (5) analogues had similar or higher affinities for PBR than the parent compound 2 (K(i) = 0.16 nM for PBR in rat brain sections). Iodomethyl analogue 6 displayed a moderate affinity, whereas tosyloxyethyl analogue 7 had weak affinity. Radiolabeling was performed for the fluoroalkyl analogues 4 and 5 using fluorine-18 ((18)F, beta(+); 96.7%, T(1/2) = 109.8 min). Ligands [(18)F]4 and [(18)F]5 were respectively synthesized by the alkylation of desmethyl precursor 3 with [(18)F]fluoromethyl iodide ([(18)F]8) and 2-[(18)F]fluoroethyl bromide ([(18)F]9). The distribution patterns of [(18)F]4 and [(18)F]5 in mice were consistent with the known distribution of PBR. However, compared with [(18)F]5, [(18)F]4 displayed a high uptake in the bone of mice. The PET image of [(18)F]4 for monkey brain also showed significant radioactivity in the bone, suggesting that this ligand was unstable for in vivo defluorination and was not a useful PET ligand. Ligand [(18)F]5 displayed a high uptake in monkey brain especially in the occipital cortex, a region with richer PBR than the other regions in the brain. The radioactivity level of [(18)F]5 in monkey brain was 1.5 times higher than that of [(11)C]2, and 6 times higher than that of (R)-(1-(2-chlorophenyl)-N-[(11)C]methyl,N-(1-methylpropyl)isoquinoline ([(11)C]1). Moreover, the in vivo binding of [(18)F]5 was significantly inhibited by PBR-selective 2 or 1, indicating that the binding of [(18)F]5 in the monkey brain was mainly due to PBR. Metabolite analysis revealed that [(18)F]4 was rapidly metabolized by defluorination to [(18)F]F(-) in the plasma and brain of mice, whereas [(18)F]5 was metabolized by debenzylation to a polar product [(18)F]13 only in the plasma. No radioactive metabolite of [(18)F]5 was detected in the mouse brain. The biological data indicate that [(18)F]5 is a useful PET ligand for PBR and is currently used for imaging PBR in human brain.
The ammonium ion is an indispensable nitrogen source for crops, especially paddy rice (Oryza sativa L. cv Nipponbare). Until now, it has been impossible to measure ammonium uptake and nitrogen movement in plants in real time. Using the new technologies of PETIS (positron emitting tracer imaging system) and PMPS (positron multi-probe system), we were able to visualize the real time translocation of nitrogen and water in rice plants. We used positron-emitting 13 N-labeled ammonium (13 NH 4 ϩ) and 15 O-water to monitor the movement. In plants cultured under normal conditions, 13 NH 4 ϩ supplied to roots was taken up, and a 13 N signal was detected at the discrimination center, the basal part of the shoots, within 2 minutes. This rapid translocation of 13 N was almost completely inhibited by a glutamine synthetase inhibitor, methionine sulfoximine. In general, nitrogen deficiency enhanced 13 N translocation to the discrimination center. In the dark, 13 N translocation to the discrimination center was suppressed to 40% of control levels, whereas 15 O-water flow from the root to the discrimination center stopped completely in the dark. In abscisic acid-treated rice, 13 N translocation to the discrimination center was doubled, whereas translocation to leaves decreased to 40% of control levels. Pretreatment with NO 3 Ϫ for 36 hours increased 13 N translocation from the roots to the discrimination center to 5 times of control levels. These results suggest that ammonium assimilation (from the roots to the discrimination center) depends passively on water flow, but actively on NH 4 ϩ-transporter(s) or glutamine synthetase(s).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.