The difference between stem-cell-mediated bone and dentin regeneration is not yet well-understood. Here we use an in vivo stem cell transplantation system to investigate differential regulation mechanisms of bone marrow stromal stem cells (BMSSCs) and dental pulp stem cells (DPSCs). Elevated expression of basic fibroblast growth factor (bFGF) and matrix metalloproteinase 9 (MMP-9, gelatinase B) was found to be associated with the formation of hematopoietic marrow in BMSSC transplants, but not in the connective tissue of DPSC transplants. The expression of dentin sialoprotein (DSP) specifically marked dentin synthesis in DPSC transplants. Moreover, DPSCs were found to be able to generate reparative dentin-like tissue on the surface of human dentin in vivo. This study provided direct evidence to suggest that osteogenesis and dentinogenesis mediated by BMSSCs and DPSCs, respectively, may be regulated by distinct mechanisms, leading to the different organization of the mineralized and non-mineralized tissues.
Understanding the molecular mechanisms by which cartilage formation is regulated is essential toward understanding the physiology of both embryonic bone development and postnatal bone growth. Although much is known about growth factor signaling in cartilage formation, the regulatory role of noncollagenous matrix proteins in this process are still largely unknown. In the present studies, we present evidence for a critical role of DMP1 (dentin matrix protein 1) in postnatal chondrogenesis. The Dmp1 gene was originally identified from a rat incisor cDNA library and has been shown to play an important role in late stage dentinogenesis. Whereas no apparent abnormalities were observed in prenatal bone development, Dmp1-deficient (Dmp1 ؊/؊ ) mice unexpectedly develop a severe defect in cartilage formation during postnatal chondrogenesis. Vertebrae and long bones in Dmp1-deficient (Dmp1 ؊/؊ ) mice are shorter and wider with delayed and malformed secondary ossification centers and an irregular and highly expanded growth plate, results of both a highly expanded proliferation and a highly expanded hypertrophic zone creating a phenotype resembling dwarfism with chondrodysplasia. This phenotype appears to be due to increased cell proliferation in the proliferating zone and reduced apoptosis in the hypertrophic zone. In addition, blood vessel invasion is impaired in the epiphyses of Dmp1 ؊/؊ mice. These findings show that DMP1 is essential for normal postnatal chondrogenesis and subsequent osteogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.