Background and Purpose-Despite technical advances in endovascular and microsurgical treatment, patients with aneurysmal subarachnoid hemorrhage still have a high mortality and morbidity rate. To improve the treatment results in patients with aneurysms, we must better understand the pathophysiology of cerebral aneurysms and the mechanisms leading to their rupture. Therefore, we studied the pathological differences between unruptured and ruptured aneurysms. Methods-Ruptured (nϭ44) and unruptured (nϭ27) aneurysms were obtained at surgery. The aneurysmal endothelium was scored from 0 (normal) to 5 (complete disruption) by using a scanning electron microscope. The aneurysmal wall was evaluated by immunohistochemical methods. The wall structure was scored from 1 (dense collagen and rich, smooth muscle cells) to 5 (hyaline-like structure). The degree of inflammatory cell invasion into the wall was also scored from 0 (very few cells) to 3 (many cells). Results-Ruptured aneurysms manifested significant endothelial damage (score of 3.7 versus 0.8; Mann-Whitney U test, PϽ10 Ϫ3 ), significant structural changes of the wall (3.7 versus 1.7, PϽ10 Ϫ5 ), and significant inflammatory cell invasion (2.2 versus 0.8, PϽ10
Kicking is the defining action of soccer, so it is appropriate to review the scientific work that provides a basis of our understanding of this skill. The focus of this review is biomechanical in nature and builds on and extends previous reviews and overviews. While much is known about the biomechanics of the kicking leg, there are several other aspects of the kick that have been the subject of recent exploration. Researchers have widened their interest to consider the kick beginning from the way a player approaches the ball to the end of ball flight, the point that determines the success of the kick. This interest has encapsulated characteristics of overall technique and the influences of the upper body, support leg and pelvis on the kicking action, foot-ball impact and the influences of footwear and soccer balls, ball launch characteristics and corresponding flight of the ball. This review evaluates these and attempts to provide direction for future research.
These results indicated that to hit the ball with the medial side of the foot, a complicated series of rotational motions are required for the side-foot kick. The hip external rotation torque dominantly exhibited in the side-foot kick caused the clockwise rotation of the thigh-shank plane at the later stage of kicking. This may allow the hip external rotation motion to increase directly the forward velocity of the side foot, with which players can squarely impact the ball.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.