Kicking is the defining action of soccer, so it is appropriate to review the scientific work that provides a basis of our understanding of this skill. The focus of this review is biomechanical in nature and builds on and extends previous reviews and overviews. While much is known about the biomechanics of the kicking leg, there are several other aspects of the kick that have been the subject of recent exploration. Researchers have widened their interest to consider the kick beginning from the way a player approaches the ball to the end of ball flight, the point that determines the success of the kick. This interest has encapsulated characteristics of overall technique and the influences of the upper body, support leg and pelvis on the kicking action, foot-ball impact and the influences of footwear and soccer balls, ball launch characteristics and corresponding flight of the ball. This review evaluates these and attempts to provide direction for future research.
The aims of this study were to examine the release speed of the ball in maximal instep kicking with the preferred and the non-preferred leg and to relate ball speed to biomechanical differences observed during the kicking action. Seven skilled soccer players performed maximal speed place kicks with the preferred and the non-preferred leg; their movements were filmed at 400 Hz. The inter-segmental kinematics and kinetics were derived. A coefficient of restitution between the foot and the ball was calculated and rate of force development in the hip flexors and the knee extensors was measured using a Kin-Com dynamometer. Higher ball speeds were achieved with the preferred leg as a result of the higher foot speed and coefficient of restitution at the time of impact compared with the non-preferred leg. These higher foot speeds were caused by a greater amount of work on the shank originating from the angular velocity of the thigh. No differences were found in muscle moments or rate of force development. We conclude that the difference in maximal ball speed between the preferred and the non-preferred leg is caused by a better inter-segmental motion pattern and a transfer of velocity from the foot to the ball when kicking with the preferred leg.
Input parameters, moment arms, as well as physiologic cross-sectional areas have a profound effect on the predicted muscle forces. Therefore, it is important to choose the values for moment arm and physiologic cross-sectional area carefully because they are essential input parameters to biomechanical models.
Vigh-Larsen, JF, Dalgas, U, and Andersen, TB. Position-specific acceleration and deceleration profiles in elite youth and senior soccer players. J Strength Cond Res 32(4): 1114-1122, 2018-The purpose of the study was to characterize and compare the position-specific activity profiles of young and senior elite soccer players with special emphasis put on accelerations and decelerations. Eight professional senior matches were tracked using the ZXY tracking system and analyzed for the number of accelerations and decelerations and running distances within different speed zones. Likewise, 4 U19 and 5 U17 matches were analyzed for comparison between youth and senior players. In senior players, the total distance (TD) was 10,776 ± 107 m with 668 ± 28 and 143 ± 10 m being high-intensity running (HIR) and sprinting, respectively. Number of accelerations and decelerations were 81 ± 2 and 84 ± 3, respectively, with central defenders performing the lowest and wide players the highest number. Declines were found between first and second halves for accelerations and decelerations (11 ± 3%), HIR (6 ± 4%), and TD (5 ± 1%), whereas sprinting distance did not differ. U19 players performed a higher number of accelerations, decelerations, and TD compared with senior players. In conclusion, differences in the number and distribution of accelerations and decelerations appeared between player positions, which is of importance when monitoring training and match loads and when prescribing specific training exercises. Furthermore, youth players performed as much high-intensity activities as senior players, indicating that this is not a discriminating physiological parameter between these players.
Purpose The present study investigated muscle metabolism and fatigue during simulated elite male ice hockey match-play. Methods Thirty U20 male national team players completed an experimental game comprising three periods of 8 × 1-min shifts separated by 2-min recovery intervals. Two vastus lateralis biopsies were obtained either during the game (n = 7) or pregame and postgame (n = 6). Venous blood samples were drawn pregame and at the end of the first and last periods (n = 14). Activity pattern and physiological responses were continuously monitored using local positioning system and heart rate recordings. Further, repeated-sprint ability was tested pregame and after each period. Results Total distance covered was 5980 ± 199 m with almost half the distance covered at high skating speeds (>17 km·h−1). Average and peak on-ice heart rate was 84% ± 2% and 97% ± 2% of maximum heart rate, respectively. Muscle lactate increased (P ≤ 0.05) more than fivefold and threefold, whereas muscle pH decreased (P ≤ 0.05) from 7.31 ± 0.04 pregame to 6.99 ± 0.07 and 7.13 ± 0.11 during the first and last periods, respectively. Muscle glycogen decreased by 53% postgame (P ≤ 0.05) with ~65% of fast- and slow-twitch fibers depleted of glycogen. Blood lactate increased sixfold (P ≤ 0.05), whereas plasma free fatty acid levels increased 1.5-fold and threefold (P ≤ 0.05) after the first and last periods. Repeated-sprint ability was impaired (~3%; P ≤ 0.05) postgame concomitant with a ~10% decrease in the number of accelerations and decelerations during the second and last periods (P ≤ 0.05). Conclusions Our findings demonstrate that a simulated ice hockey match-play scenario encompasses a high on-ice heart rate response and glycolytic loading resulting in a marked degradation of muscle glycogen, particularly in specific sub-groups of fibers. This may be of importance both for fatigue in the final stages of a game and for subsequent recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.