Locally advanced or metastatic urothelial cancer is an aggressive form of cancer with high recurrence rates and low survival. Nectin-4 is a cell adhesion molecule commonly expressed in several tumors, including high expression in urothelial cancer. Enfortumab vedotin is an antibody-drug conjugate composed of an anti-Nectin-4 humanized monoclonal antibody linked to the microtubule disrupting agent, monomethyl auristatin E. In this phase I study (NCT03070990), Japanese patients with locally advanced/metastatic urothelial cancer treated with prior chemotherapy, or ineligible for cisplatin, were randomized 1:1 to receive 1.0 mg/kg (Arm A) or 1.25 mg/kg (Arm B) enfortumab vedotin on Days 1, 8, and 15 of each 28-day cycle. Assessing the pharmacokinetic and safety/tolerability profiles of enfortumab vedotin were primary objectives; investigator-assessed antitumor activity (RECIST v1.1) was a secondary objective. Seventeen patients (n = 9, Arm A; n = 8, Arm B) received treatment. Pharmacokinetic data suggest a dose-dependent increase in enfortumab vedotin maximum concentration and area under the concentration-time curve at Day 7. Enfortumab vedotin was well tolerated across both doses. Dysgeusia and alopecia (n = 9 each) were the most common treatment-related adverse events. Regardless of attribution, grade ≥ 3 adverse events occurring in ≥2 patients were anemia and hypertension (n = 2 each). One patient achieved a confirmed complete response (Arm A) and five achieved confirmed partial responses (n = 3, Arm A; n = 2, Arm B). Objective response and disease control rates were 35.3% and 76.5%, respectively. In Japanese patients with locally advanced/metastatic urothelial cancer, enfortumab vedotin is well tolerated with preliminary antitumor activity and a pharmacokinetic profile consistent with prior reports.
OBJECTIVEIpragliflozin, a sodium-glucose cotransporter 2 inhibitor, stimulates glycosuria and lowers glycemia in patients with type 2 diabetes (T2DM). The objective of this study was to assess the pharmacodynamics of ipragliflozin in T2DM patients with impaired renal function.RESEARCH DESIGN AND METHODSGlycosuria was measured before and after a single ipragliflozin dose in 8 nondiabetic subjects and 57 T2DM patients (age 62 ± 9 years, fasting glucose 133 ± 39 mg/dL, mean ± SD) with normal renal function (assessed as the estimated glomerular filtration rate [eGFR]) (eGFR1 ≥90 mL · min–1 · 1.73 m−2), mild (eGFR2 ≥60 to <90), moderate (eGFR3 ≥30 to <60), or severe reduction in eGFR (eGFR4 ≤15 to <30).RESULTSIpragliflozin significantly increased urinary glucose excretion in each eGFR class (P < 0.0001). However, ipragliflozin-induced glycosuria declined (median [IQR]) across eGFR class (from 46 mg/min [33] in eGFR1 to 8 mg/min [7] in eGFR4, P < 0.001). Ipragliflozin-induced fractional glucose excretion (excretion/filtration) was 39% [27] in the T2DM patients (pooled data), similar to that of the nondiabetic subjects (37% [17], P = ns). In bivariate analysis of the pooled data, ipragliflozin-induced glycosuria was directly related to eGFR and fasting glucose (P < 0.0001 for both, r2 = 0.55), predicting a decrement in 24-h glycosuria of 15 g for each 20 mL/min decline in eGFR and an increase of 7 g for each 10 mg/dL increase in glucose above fasting normoglycemia.CONCLUSIONSIn T2DM patients, ipragliflozin increases glycosuria in direct, linear proportion to GFR and degree of hyperglycemia, such that its amount can be reliably predicted in the individual patient. Although absolute glycosuria decreases with declining GFR, the efficiency of ipragliflozin action (fractional glucose excretion) is maintained in patients with severe renal impairment.
Background and Objective Gilteritinib is a novel, highly selective tyrosine kinase inhibitor approved in the USA, Canada, Europe, Brazil, Korea, and Japan for the treatment of FLT3 mutation-positive acute myeloid leukemia. This article describes the clinical pharmacokinetic profile of gilteritinib. Methods The pharmacokinetic profile of gilteritinib was assessed from five clinical studies. Results Dose-proportional pharmacokinetics was observed following once-daily gilteritinib administration (dose range 20-450 mg). Median maximum concentration was reached 2-6 h following single and repeat dosing of gilteritinib; mean elimination half-life was 113 h. Elimination was primarily via feces. Exposure to gilteritinib was comparable under fasted and fed conditions. Gilteritinib is primarily metabolized via cytochrome P450 (CYP) 3A4; coadministration of gilteritinib with itraconazole (a strong P-glycoprotein inhibitor and CYP3A4 inhibitor) or rifampicin (a strong P-glycoprotein inducer and CYP3A inducer) significantly affected the gilteritinib pharmacokinetic profile. No clinically relevant interactions were observed when gilteritinib was coadministered with midazolam (a CYP3A4 substrate) or cephalexin (a multidrug and toxin extrusion 1 substrate). Unbound gilteritinib exposure was similar between subjects with hepatic impairment and normal hepatic function. Conclusions Gilteritinib exhibits a dose-proportional pharmacokinetic profile in healthy subjects and in patients with relapsed/refractory acute myeloid leukemia. Gilteritinib exposure is not significantly affected by food. Moderate-to-strong CYP3A inhibitors demonstrated a significant effect on gilteritinib exposure. Coadministration of gilteritinib with CYP3A4 or multidrug and toxin extrusion 1 substrates did not impact substrate concentrations. Unbound gilteritinib was comparable between subjects with hepatic impairment and normal hepatic function; dose adjustment is not warranted for patients with hepatic impairment.
Administration of ipragliflozin was well tolerated and resulted in a rapid, dose-dependent increase in glucosuria. Pharmacodynamic and pharmacokinetic data suggest that ipragliflozin is suitable for prolonged once-daily oral treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.