Ag(In,Ga)Se 2 (AIGS) is one of the promising candidates for the top cell absorber in the tandem structure. However, the conversion efficiency of AIGS solar cells is still lower than that required for the top cell. In this study, to improve the conversion efficiency of AIGS solar cells, we controlled the conduction band offset (CBO) at the buffer layer/ZnO and buffer layer/AIGS interfaces. The reduction in interface recombination at the CdS buffer layer/AIGS interface was achieved by introducing a ZnS(O,OH) buffer layer instead of a CdS buffer layer, although the fill factor (FF ) decreased markedly because the CBO at the ZnS(O,OH)/ZnO interface prevented the electron flow under a forward bias. We found that the introduction of a CdS/ZnS(O,OH) hybrid buffer layer is efficient in controlling the CBO at both the buffer layer/AIGS and buffer layer/ZnO interfaces and improving the solar cell conversion efficiency.
The roll-over shape often observed in the current–voltage curve of Ag(In,Ga)Se2 (AIGS) solar cells degrades the open circuit voltage (V
OC) and particularly the fill factor (FF). The origin of the roll-over shape was investigated by experimental measurements and device simulation. By combining AC Hall measurement and the peel-off process, we estimated the AIGS hole concentration to be 2.2 × 1012 cm−3. Theoretical simulation revealed that the roll-over shape is attributed to this low hole concentration. Under an applied forward bias, the band bending near the back contact of the AIGS layer forms an intrinsic semiconductor owing to the injected electrons, leading to the formation of an inverted diode. To solve this issue, the addition of NaF by the postdeposition treatment of the AIGS layer was performed. As a result, the hole concentration of the AIGS layer increased, significantly improving its V
OC, FF, and conversion efficiency.
We have developed a new evaluation method for electrical properties of Cu(In,Ga)Se 2 (CIGS) grown on a Mo-coated soda-lime glass (SLG). The method consists of the peel-off process and the AC Hall measurement, which enables us to evaluate CIGS films grown on the Mo electrode. It was found, from the measurement, that the hole concentration of CIGS grown on a Mo-coated SLG was approximately two orders of magnitude higher than that on a SLG, suggesting the Na-doping effect. Furthermore, the hole mobility of 0.47 cm 2 /(V&s) was simultaneously measured, even though the film was deposited on the Mo electrode.
The study deals with a new method to generate interference-free tool posture for 5-axis control machining using a ball end-mill. The 5-axis control machining can produce complicated shapes and parts consisting of overhanging and or sculptured surfaces such as impellers. However, high degree of freedom of 5-axis control machining center causes a fatal problem that other parts except cutting edges of the tool may interfere with other surfaces of the machining object. Therefore, it is necessary to obtain the adequate tool postures to avoid the interference during machining. The interference avoidance is generally performed by the method that cutting points are generated so as to be arranged on the surface to be machined, and then the interference-free tool posture is determined on each cutting point by the geometrical calculations. However, the method has a problem that it takes long time for calculation. To solve the problem, the study proposes a new interference avoidance method of reversing the order of the above procedure, i.e., that of determining a set of interference-free tool postures before generating cutting points. From the machining results, it is confirmed that the proposed method is available to fabricate complicated shapes since the impeller can be machined by using the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.