Although recent evidence has suggested that a high-fat diet (HFD) plays an important role in prostate carcinogenesis, the underlying mechanisms have largely remained unknown. This review thus summarizes previous preclinical studies that have used prostate cancer cells and animal models to assess the impact of dietary fat on prostate cancer development and progression. Large variations in the previous studies were found during the selection of preclinical models and types of dietary intervention. Subcutaneous human prostate cancer cell xenografts, such as LNCaP, LAPC-4, and PC-3 and genetic engineered mouse models, such as TRAMP and Pten knockout, were frequently used. The dietary interventions had not been standardized, and distinct variations in the phenotype were observed in different studies using distinct HFD components. The use of different dietary components in the research models is reported to influence the effect of diet-induced metabolic disorders. The proposed underlying mechanisms for HFD-induced prostate cancer were divided into (1) growth factor signaling, (2) lipid metabolism, (3) inflammation, (4) hormonal modulation, and others. A number of preclinical studies proposed that dietary fat and/or obesity enhanced prostate cancer development and progression. However, the relationship still remains controversial, and care should be taken when interpreting the results in a human context. Future studies using more sophisticated preclinical models are imperative in order to explore deeper understanding regarding the impact of dietary fat on the development and progression of prostate cancer.
Although obesity increases the risk of renal cell carcinoma (RCC), obese patients with RCC experience longer survival than non-obese patients. However, the mechanism of this “obesity paradox” is unknown. We examined the impact of preoperative BMI, serum total adiponectin (sAd) level, total adiponectin secretion from perinephric adipose tissue, and intratumoral expression of adiponectin receptors on RCC aggressiveness and survival. We also investigated the mechanism underlying enhanced cancer aggressiveness in RCC cells stimulated with exogenous adiponectin. Overweight and obese patients had significantly lower grade cancers than normal patients in all patients and in those without metastasis (p = 0.003 and p = 0.027, respectively). Cancer-specific survival was significantly longer in overweight and obese patients than in normal patients in all patients (p = 0.035). There was a weak inverse correlation between sAd level and BMI in RCC patients (r = −0.344, p = 0.002). Tumor size was slightly correlated with sAd level, and high sAd was significantly associated with poor overall survival rates in patients with non-metastatic RCC (p = 0.035). Adiponectin levels in perinephric adipose tissue and intratumoral AdipoR1/R2 expression were not correlated with RCC aggressiveness or survival. Proliferation significantly increased in 786-O and Caki-2 cells exposed to exogenous adiponectin, whereas cell invasion and migration were unaffected. In addition, exogenous adiponectin significantly inhibited starvation- and metformin-induced apoptosis, and up-regulated p-AMPK and Bcl-xL levels. In summary, low BMI and high adiponectin levels are associated with aggressive cell behaviors and poor survival in surgically-treated RCC patients. The effects of adiponectin on proliferation and apoptosis might underlie the “obesity paradox” of RCC.
Robot-assisted radical prostatectomy may potentially achieve the lowest positive surgical margin rate among three surgical approaches. The bladder neck was the most common location of positive surgical margin in robot-assisted radical prostatectomy and apex in open radical prostatectomy and laparoscopic radical prostatectomy. Although robot-assisted radical prostatectomy may contribute to the reduction of positive surgical margin, dissection of the bladder neck requires careful attention to avoid positive surgical margins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.