the L1-specific gene expression (Abe et al., 2001). The L1 box is well-conserved within the promoter regions of all L1-specific
The Arabidopsis (Arabidopsis thaliana) genome contains 16 genes belonging to the class IV homeodomain-Leucine zipper gene family. These include GLABRA2, ANTHOCYANINLESS2, FWA, ARABIDOPSIS THALIANA MERISTEM LAYER1 (ATML1), and PROTODERMAL FACTOR2 (PDF2). Our previous study revealed that atml1 pdf2 double mutants have severe defects in the shoot epidermal cell differentiation. Here, we have characterized additional members of this gene family, which we designated HOMEODOMAIN GLABROUS1 (HDG1) through HDG12. Analyses of transgenic Arabidopsis plants carrying the gene-specific promoter fused to the bacterial β-glucuronidase reporter gene revealed that some of the promoters have high activities in the epidermal layer of the shoot apical meristem and developing shoot organs, while others are temporarily active during reproductive organ development. Expression profiles of highly conserved paralogous gene pairs within the family were found to be not necessarily overlapping. Analyses of T-DNA insertion mutants of these HDG genes revealed that all mutants except hdg11 alleles exhibit no abnormal phenotypes. hdg11 mutants show excess branching of the trichome. This phenotype is enhanced in hdg11 hdg12 double mutants. Double mutants were constructed for other paralogous gene pairs and genes within the same subfamily. However, novel phenotypes were observed only for hdg3 atml1 and hdg3 pdf2 mutants that both exhibited defects in cotyledon development. These observations suggest that some of the class IV homeodomain-Leucine zipper members act redundantly with other members of the family during various aspects of cell differentiation. DNA-binding sites were determined for two of the family members using polymerase chain reaction-assisted DNA selection from random oligonucleotides with their recombinant proteins. The binding sites were found to be similar to those previously identified for ATML1 and PDF2, which correspond to the pseudopalindromic sequence 5′-GCATTAAATGC-3′ as the preferential binding site.
The mechanisms of action of polyamines differ greatly from those of plant hormones. There remain numerous unanswered questions regarding polyamines in plants, such as transport systems and polyamine-responsive genes. Further studies on the action of polyamines will undoubtedly provide a new understanding of plant growth regulation and stress responses.
Polyamines have been implicated in a wide range of biological processes, including growth and development in bacteria and animals, but their function in higher plants is unclear. Here we show that the Arabidopsis ACAULIS5 (ACL5) gene, whose inactivation causes a defect in the elongation of stem internodes by reducing cell expansion, encodes a protein that shares sequence similarity with the polyamine biosynthetic enzymes spermidine synthase and spermine synthase. Expression of the recombinant ACL5 protein in Escherichia coli showed that ACL5 possesses spermine synthase activity. Restoration of the acl5 mutant phenotype by somatic reversion of a transposon-induced allele suggests a non-cell-autonomous function for the ACL5 gene product. We also found that expression of the ACL5 cDNA under the control of a heat shock gene promoter in acl5 mutant plants restores the phenotype in a heat shock-dependent manner. The results of the experiments showed that polyamines play an essential role in promotion of internode elongation through cell expansion in Arabidopsis. We discuss the relationships to plant growth regulators such as auxin and gibberellins that have related functions.
SummaryThe Arabidopsis thaliana PROTODERMAL FACTOR1 (PDF1) gene encoding a putative extracellular proline-rich protein is exclusively expressed in the L1 layer of shoot apices and the protoderm of organ primordia. In order to identify essential cis-regulatory sequences required for the L1 layer-speci®c expression, a series of 5¢ deletions of the PDF1 promoter were fused to the b-glucronidase (GUS) gene and introduced into Arabidopsis plants. Our analysis revealed that the minimum region necessary to confer L1-speci®c expression of PDF1 is con®ned within a 260-bp fragment upstream of the transcription start site. We identi®ed an 8-bp motif in this region that is conserved between promoter regions of all the L1-speci®c genes so far cloned, and we designated it the L1 box. Electrophoretic mobility shift assays demonstrated that the L1-speci®c homeodomain protein ATML1 can bind to the L1 box sequence in vitro. The GUS expression in transgenic plants disappeared when a mutation that abolishes binding of ATML1 was introduced into the PDF1 l1 box sequence of the construct. These results suggest that the L1 box plays a crucial role in the regulation of PDF1 expression in L1 cells and that ATML1 could cooperate to drive L1-speci®c expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.