To develop an efficient animal model for colitis-related carcinogenesis, male Crj: CD-1 (ICR) mice were given a single intraperitoneal administration (10 mg/kg body weight) of a genotoxic colonic carcinogen, azoxymethane (AOM), and a 1-week oral exposure (2% in drinking water) to a non-genotoxic carcinogen, dextran sodium sulfate (DSS), under various protocols. At week 20, colonic neoplasms (adenocarcinomas, 100% incidence with 5.60 ± ± ± ±2.42 multiplicity; and adenomas, 38% incidence with 0.20 ± ± ± ±0.40 multiplicity) with dysplastic lesions developed in mice treated with AOM followed by DSS. Protocols in which AOM was given during or after DSS administration induced a few tubular adenomas or no tumors in the colon. Immunohistochemical investigation of such dysplasias and neoplasms revealed that all lesions were positive for β β β β-catenin, cyclooxygenase-2 and inducible nitric oxide synthase, but did not show p53 immunoreactivity. The results indicate that 1-week administration of 2% DSS after initiation with a low dose of AOM exerts a powerful tumor-promoting activity in colon carcinogenesis in male ICR mice, and may provide a novel mouse model for investigating colitis-related colon carcinogenesis and for identifying xenobiotics with modifying effects. (Cancer Sci 2003; 94: 965-973) n the developed world, colorectal cancer (CRC) is one of the commonest non-smoking related cancers. This malignancy is one of the most serious complications of inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), 1,2) and the risk of CRC increases with increasing extent and duration of the disease.Animal experiments are assumed to simulate or at least provide plausible pathophysiological mechanisms in various diseases including cancer and inflammatory disorders. For IBD and IBD-related CRC, several animal models have been reported. The most widely used is a mouse model with dextran sodium sulfate (DSS).3) There are a number of reports on modifying effects of xenobiotics on CRC-related colon carcinogenesis in this model 4,5) : folic acid, short chain fatty acid (butyrate), ursodeoxycholic acid, nonsteroidal anti-inflammatory drugs (NSAIDs)/cyclooxygenase (COX)-2 inhibitors, and 5-aminosalicylic acid (5-ASA) were found to inhibit the occurrence of UC-related CRC. However, this colitis model using DSS with or without carcinogen needs a long period or repeated administration of DSS to induce colitis and colitis-related CRC, and the incidence and/or multiplicity of induced tumors are relatively low.6) Many studies have suggested that chronic or repeated mucosal inflammation may result in carcinogenesis through mechanisms such as induction of genetic mutations, increased cryptal cell proliferation, changes in crypt cell metabolism, changes in bile acid enterohepatic circulation, and alterations in bacteria flora. 7,8) These ideas are consistent with the hypothesis that chronic inflammation could be associated with epithelial malignant neoplasia in the large bowel. 8) We recently reported c...
The human genome contains 19 putatively functional aldehyde dehydrogenase (ALDH) genes, which encode enzymes critical for detoxification of endogenous and exogenous aldehyde substrates through NAD(P)+-dependent oxidation. ALDH1 has three main isotypes, ALDH1A1, ALDH1A2, and ALDH1A3, and is a marker of normal tissue stem cells (SC) and cancer stem cells (CSC), where it is involved in self-renewal, differentiation and self-protection. Experiments with murine and human cells indicate that ALDH1 activity, predominantly attributed to isotype ALDH1A1, is tissue- and cancer-specific. High ALDH1 activity and ALDH1A1 overexpression are associated with poor cancer prognosis, though high ALDH1 and ALDH1A1 levels do not always correlate with highly malignant phenotypes and poor clinical outcome. In cancer therapy, ALDH1A1 provides a useful therapeutic CSC target in tissue types that normally do not express high levels of ALDH1A1, including breast, lung, esophagus, colon and stomach. Here we review the functions and mechanisms of ALDH1A1, the key ALDH isozyme linked to SC populations and an important contributor to CSC function in cancers, and we outline its potential in future anticancer strategies.
The study of experimental colon carcinogenesis in rodents has a long history, dating back almost 80 years. There are many advantages to studying the pathogenesis of carcinogen-induced colon cancer in mouse models, including rapid and reproducible tumor induction and the recapitulation of the adenoma-carcinoma sequence that occurs in humans. The availability of recombinant inbred mouse panels and the existence of transgenic, knock-out and knock-in genetic models further increase the value of these studies. In this review, we discuss the general mechanisms of tumor initiation elicited by commonly used chemical carcinogens and how genetic background influences the extent of disease. We will also describe the general features of lesions formed in response to carcinogen treatment, including the underlying molecular aberrations and how these changes may relate to the pathogenesis of human colorectal cancer.
Carotenoids are natural fat-soluble pigments that provide bright coloration to plants and animals. Dietary intake of carotenoids is inversely associated with the risk of a variety of cancers in different tissues. Preclinical studies have shown that some carotenoids have potent antitumor effects both in vitro and in vivo, suggesting potential preventive and/or therapeutic roles for the compounds. Since chemoprevention is one of the most important strategies in the control of cancer development, molecular mechanism-based cancer chemoprevention using carotenoids seems to be an attractive approach. Various carotenoids, such as β-carotene, a-carotene, lycopene, lutein, zeaxanthin, β-cryptoxanthin, fucoxanthin, canthaxanthin and astaxanthin, have been proven to have anti-carcinogenic activity in several tissues, although high doses of β-carotene failed to exhibit chemopreventive activity in clinical trials. In this review, cancer prevention using carotenoids are reviewed and the possible mechanisms of action are described.
This review gives a comprehensive overview of cancer development and links it to the current understanding of tumorigenesis and malignant progression in colorectal cancer. The focus is on human and murine colorectal carcinogenesis and the histogenesis of this malignant disorder. A summary of a model of colitis-associated colon tumorigenesis (an AOM/DSS model) will also be presented. The earliest phases of colorectal oncogenesis occur in the normal mucosa, with a disorder of cell replication. The large majority of colorectal malignancies develop from an adenomatous polyp (adenoma). These can be defined as well-demarcated masses of epithelial dysplasia, with uncontrolled crypt cell proliferation. When neoplastic cells pass through the muscularis mucosa and infiltrate the submucosa, they are malignant. Carcinomas usually originate from pre-existing adenomas, but this does not imply that all polyps undergo malignant changes and does not exclude de novo oncogenesis. Besides adenomas, there are other types of pre-neoplasia, which include hyperplastic polyps, serrated adenomas, flat adenomas and dysplasia that occurs in the inflamed colon in associated with inflammatory bowel disease. Colorectal neoplasms cover a wide range of pre-malignant and malignant lesions, many of which can easily be removed during endoscopy if they are small. Colorectal neoplasms and/or pre-neoplasms can be prevented by interfering with the various steps of oncogenesis, which begins with uncontrolled epithelial cell replication, continues with the formation of adenomas and eventually evolves into malignancy. The knowledge described herein will help to reduce and prevent this malignancy, which is one of the most frequent neoplasms in some Western and developed countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.