The human genome contains 19 putatively functional aldehyde dehydrogenase (ALDH) genes, which encode enzymes critical for detoxification of endogenous and exogenous aldehyde substrates through NAD(P)+-dependent oxidation. ALDH1 has three main isotypes, ALDH1A1, ALDH1A2, and ALDH1A3, and is a marker of normal tissue stem cells (SC) and cancer stem cells (CSC), where it is involved in self-renewal, differentiation and self-protection. Experiments with murine and human cells indicate that ALDH1 activity, predominantly attributed to isotype ALDH1A1, is tissue- and cancer-specific. High ALDH1 activity and ALDH1A1 overexpression are associated with poor cancer prognosis, though high ALDH1 and ALDH1A1 levels do not always correlate with highly malignant phenotypes and poor clinical outcome. In cancer therapy, ALDH1A1 provides a useful therapeutic CSC target in tissue types that normally do not express high levels of ALDH1A1, including breast, lung, esophagus, colon and stomach. Here we review the functions and mechanisms of ALDH1A1, the key ALDH isozyme linked to SC populations and an important contributor to CSC function in cancers, and we outline its potential in future anticancer strategies.
SUMMARY The recognition of modified histones by “reader” proteins constitutes a key mechanism regulating gene expression in the chromatin context. Compared with the great variety of readers for histone methylation, few protein modules that recognize histone acetylation are known. Here we show that the AF9 YEATS domain binds strongly to histone H3K9 acetylation and, to a lesser extent, H3K27 and H3K18 acetylation. Crystal structural studies revealed that AF9 YEATS adopts an eight-stranded immunoglobin fold and utilizes a serine-lined aromatic “sandwiching” cage for acetyllysine readout, representing a novel recognition mechanism that is distinct from that of known acetyllysine readers. ChIP-seq experiments revealed a strong co-localization of AF9 and H3K9 acetylation genome-wide, which is important for the chromatin recruitment of the H3K79 methyltransferase DOT1L. Together, our studies identified the evolutionarily conserved YEATS domain as a novel acetyllysine-binding module and established a direct link between histone acetylation and DOT1L-mediated H3K79 methylation in transcription control.
Recognition of modified histones by “reader” proteins plays a critical role in the regulation of chromatin1. H3K36 trimethylation (H3K36me3) is deposited onto the nucleosomes in the transcribed regions following RNA polymerase II (Pol II) elongation. In yeast, this mark in turn recruits epigenetic regulators to reset the chromatin to a relatively repressive state thus suppressing cryptic transcription2. However, much less is known about the role of H3K36me3 in transcription regulation in mammals. This is further complicated by the transcription-coupled incorporation of the histone variant H3.3 in gene bodies3. Here we show that the candidate tumor suppressor ZMYND11 specifically recognizes H3K36me3 on H3.3 (H3.3K36me3) and regulates Pol II elongation. Structural studies reveal that in addition to the trimethyl-lysine binding by an aromatic cage within the PWWP domain, the H3.3-dependent recognition is mediated by the encapsulation of the H3.3-specific “Ser31” residue in a composite pocket formed by the tandem bromo-PWWP domains of ZMYND11. ChIP-sequencing analyses reveal a genome-wide colocalization of ZMYND11 with H3K36me3 and H3.3 in gene bodies, and its occupancy requires the pre-deposition of H3.3K36me3. Although ZMYND11 is associated with highly expressed genes, it functions as an unconventional transcription corepressor via modulating Pol II at the elongation stage. ZMYND11 is critical for the repression of a transcriptional program that is essential for tumor cell growth; low expression level of ZMYND11 in breast cancer patients correlates with worse prognosis. Consistently, overexpression of ZMYND11 suppresses cancer cell growth in vitro and tumor formation in mice. Together, this study identifies ZMYND11 as an H3.3-specific reader of H3K36me3 that links the histone variant-mediated transcription elongation control to tumor suppression.
Sequencing the large genomes of sharks. We focused on the brownbanded bamboo shark Chiloscyllium punctatum, for which we recently tabled embryonic stages 8 , and the cloudy catshark Scyliorhinus torazame. Their whole genomes, measured to be approximately 4.7 and 6.7 Gbp, respectively, were sequenced de novo to obtain assemblies including megabase-long scaffolds (Supplementary Note 1.1). We also assembled the genome of the whale shark Rhincodon typus using short sequence reads previously generated 3 (Supplementary Note 1.2). Using these genome assemblies, we performed genome-wide gene prediction, assisted by transcript evidence and protein-level homology to other vertebrates. The obtained genome assemblies and gene models exhibit high coverage (Supplementary Fig. 1), and of these, the bamboo shark genome assembly achieved the highest continuity (N50 scaffold length, 1.9 Mbp) and completeness (97% of reference orthologues identified at least partially). Using the novel gene models, we constructed orthologue groups encompassing a diverse array of vertebrate species (see below). Our products outperform existing
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.