In this study, functional near-infrared spectroscopy (fNIRS) was used to examine the brain activation and connectivity in occipitotemporal cortex during Chinese character recognition (CCR). Eighteen healthy participants were recruited to perform a well-designed task with three categories of stimuli (real characters, pseudo characters, and checkerboards). By inspecting the brain activation difference and its relationship with behavioral data, the left laterality during CCR was clearly identified in the Brodmann area (BA) 18 and 19. In addition, our novel findings also demonstrated that the bilateral superior temporal gyrus (STG), bilateral BA 19, and left fusiform gyrus were also involved in high-level lexical information processing such as semantic and phonological ones. Meanwhile, by examining functional brain networks, we discovered that the right BA 19 exhibited enhanced brain connectivity. In particular, the connectivity in the right fusiform gyrus, right BA 19, and left STG showed significant correlation with the performance of CCR. Consequently, the combination of fNIRS technique with functional network analysis paves a new avenue for improved understanding of the cognitive mechanism underlying CCR.
Neuroimaging studies have revealed that insomnia is characterized by aberrant neuronal connectivity in specific brain regions, but the topological disruptions in the white matter (WM) structural connectivity networks remain largely unknown in insomnia. The current study uses diffusion tensor imaging (DTI) tractography to construct the WM structural networks and graph theory analysis to detect alterations of the brain structural networks. The study participants comprised 30 healthy subjects with insomnia symptoms (IS) and 62 healthy subjects without IS. Both the two groups showed small-world properties regarding their WM structural connectivity networks. By contrast, increased local efficiency and decreased global efficiency were identified in the IS group, indicating an insomnia-related shift in topology away from regular networks. In addition, the IS group exhibited disrupted nodal topological characteristics in regions involving the fronto-limbic and the default-mode systems. To our knowledge, this is the first study to explore the topological organization of WM structural network connectivity in insomnia. More importantly, the dysfunctions of large-scale brain systems including the fronto-limbic pathways, salience network and default-mode network in insomnia were identified, which provides new insights into the insomnia connectome. Topology-based brain network analysis thus could be a potential biomarker for IS.
The current study is aimed at establishing links between brain network examination and neural plasticity studies measured by optical neuroimaging. Sixteen healthy subjects were recruited from the University of Macau to test the Granger Prediction Estimation (GPE) method to investigate brain network connectivity during figurative language comprehension. The method is aimed at mapping significant causal relationships across language brain networks, captured by functional near-infrared spectroscopy measurements (fNIRS): (i) definition of regions of interest (ROIs) based on significant channels extracted from spatial activation maps; (ii) inspection of significant causal relationships in temporal resolution, exploring the experimental task agreement; and (iii) early identification of stronger causal relationships that guide neuromodulation intervention, targeting impaired connectivity pathways. Our results propose top-down mechanisms responsible for perceptive-attention engagement in the left anterior frontal cortex and bottom-up mechanism in the right hemispheres during the semantic integration of figurative language. Moreover, the interhemispheric directional flow suggests a right hemisphere engagement in decoding unfamiliar literal sentences and fine-grained integration guided by the left hemisphere to reduce ambiguity in meaningless words. Finally, bottom-up mechanisms seem activated by logographic-semantic processing in literal meanings and memory storage centres in meaningless comprehension. To sum up, our main findings reveal that the Granger Prediction Estimation (GPE) integrated strategy proposes an effective link between assessment and intervention, capable of enhancing the efficiency of the treatment in language disorders and reducing the neuromodulation side effects.
This study investigated the neural mechanisms located in the prefrontal cortex (PFC) involved in maintaining addictive-like eating behavior. Therefore, we aimed to fill a gap in the existing literature and help clarify the food addiction (FA) cycle by inspecting the relationship between the executive control and psychopathology involved in the FA cycle. Twenty-three students recruited from the University of Macau participated in this study. We investigated a hemodynamic response captured by NIRS recordings, activated during [Formula: see text]-back, set-shifting, and go/no-go paradigms. Moreover, we investigated the FA symptoms through the YFAS clinical inventory to better understand the relationship between hemodynamic response and clinical symptomatology in college students. First, the hemodynamic findings confirm that altered cognitive control in executive function performance appears to be linked to addictive-like eating behaviors, which in turn confirms a circuit similarity between FA and the substance abuse population (SUD) as reported in previous fMRI studies. Secondly, the psychological findings confirm the significant association between the working memory deficits and symptoms severity which suggest the role of self-control and regulation in limiting the storage resources as a potential trigger to develop overconsumption episodes in the FA cycle. Our findings highlight how disrupted self-control and regulation of craving and negative affect induced by mental imagery might shape and overload the working memory storage as a potential trigger to develop binge eating episodes to maintain the FA cycle. In conclusion, the use of fNIRS in the context of eating disorders studies represents a valuable application, noninvasive, and patient-friendly tool, providing new insights into understanding the addiction cycle and treatment guidelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.