With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited.
Remote sensing image classification (RSIC) is a classical and fundamental task in the intelligent interpretation of remote sensing imagery, which can provide unique labeling information for each acquired remote sensing image. Thanks to the potent global context information extraction ability of the multi-head self-attention (MSA) mechanism, visual transformer (ViT)-based architectures have shown excellent capability in natural scene image classification. However, in order to achieve powerful RSIC performance, it is insufficient to capture global spatial information alone. Specifically, for fine-grained target recognition tasks with high inter-class similarity, discriminative and effective local feature representations are key to correct classification. In addition, due to the lack of inductive biases, the powerful global spatial context representation capability of ViT requires lengthy training procedures and large-scale pre-training data volume. To solve the above problems, a hybrid architecture of convolution neural network (CNN) and ViT is proposed to improve the RSIC ability, called P2FEViT, which integrates plug-and-play CNN features with ViT. In this paper, the feature representation capabilities of CNN and ViT applying for RSIC are first analyzed. Second, aiming to integrate the advantages of CNN and ViT, a novel approach embedding CNN features into the ViT architecture is proposed, which can make the model synchronously capture and fuse global context and local multimodal information to further improve the classification capability of ViT. Third, based on the hybrid structure, only a simple cross-entropy loss is employed for model training. The model can also have rapid and comfortable convergence with relatively less training data than the original ViT. Finally, extensive experiments are conducted on the public and challenging remote sensing scene classification dataset of NWPU-RESISC45 (NWPU-R45) and the self-built fine-grained target classification dataset called BIT-AFGR50. The experimental results demonstrate that the proposed P2FEViT can effectively improve the feature description capability and obtain outstanding image classification performance, while significantly reducing the high dependence of ViT on large-scale pre-training data volume and accelerating the convergence speed. The code and self-built dataset will be released at our webpages.
Recently, extensive convolutional neural network (CNN)-based methods have been used in remote sensing applications, such as object detection and classification, and have achieved significant improvements in performance. Furthermore, there are a lot of hardware implementation demands for remote sensing real-time processing applications. However, the operation and storage processes in floating-point models hinder the deployment of networks in hardware implements with limited resource and power budgets, such as field-programmable gate arrays (FPGAs) and application-specific integrated circuits (ASICs). To solve this problem, this paper focuses on optimizing the hardware design of CNN with low bit-width integers by quantization. First, a symmetric quantization scheme-based hybrid-type inference method was proposed, which uses the low bit-width integer to replace floating-point precision. Then, a training approach for the quantized network is introduced to reduce accuracy degradation. Finally, a processing engine (PE) with a low bit-width is proposed to optimize the hardware design of FPGA for remote sensing image classification. Besides, a fused-layer PE is also presented for state-of-the-art CNNs equipped with Batch-Normalization and LeakyRelu. The experiments performed on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset using a graphics processing unit (GPU) demonstrate that the accuracy of 8-bit quantized model drops by about 1%, which is an acceptable accuracy loss. The accuracy result tested on FPGA is consistent with that of GPU. As for the resource consumptions of FPGA, the Look Up Table (LUT), Flip-flop (FF), Digital Signal Processor (DSP), and Block Random Access Memory (BRAM) are reduced by 46.21%, 43.84%, 45%, and 51%, respectively, compared with that of floating-point implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.