The graduate unemployment rate is one of the current issues being discussed by higher education scholars. College and university students often face unemployment after spending their valuable time and money in order to receive educational advantages. It makes them are more vulnerable to unfavourable economic conditions as those students have spent a lot of their resources while having the higher education. This paper examines the reasons and factors why fresh graduates are facing unemployment in the competitive market in Klang Vally, Malaysia. 200 data of fresh graduate was collected and analysed by SPSS20. There are several factors that explain their unemployment status, and this paper identifies each component at an individual level. With specific analysis of the unemployment phenomena, this paper provides direction for further research. The study establishes that the fresh graduates need to change their demanding attitude and at the same time, they must adopt more employability skills in order to get a job placement.
The helminth Strongyloides stercoralis, which is transmitted through soil, infects 30–100 million people worldwide. S. stercoralis reproduces sexually outside the host as well as asexually within the host, which causes a life-long infection. To understand the population structure and transmission patterns of this parasite, we re-sequenced the genomes of 33 individual S. stercoralis nematodes collected in Myanmar (prevalent region) and Japan (non-prevalent region). We utilised a method combining whole genome amplification and next-generation sequencing techniques to detect 298,202 variant positions (0.6% of the genome) compared with the reference genome. Phylogenetic analyses of SNP data revealed an unambiguous geographical separation and sub-populations that correlated with the host geographical origin, particularly for the Myanmar samples. The relatively higher heterozygosity in the genomes of the Japanese samples can possibly be explained by the independent evolution of two haplotypes of diploid genomes through asexual reproduction during the auto-infection cycle, suggesting that analysing heterozygosity is useful and necessary to infer infection history and geographical prevalence.
BackgroundParasites excrete and secrete a wide range of molecules that act as the primary interface with their hosts and play critical roles in establishing parasitism during different stages of infection. Strongyloides venezuelensis is a gastrointestinal parasite of rats that is widely used as a laboratory model and is known to produce both soluble and insoluble (adhesive) secretions during its parasitic stages. However, little is known about the constituents of these secretions.ResultsUsing mass spectrometry, we identified 436 proteins from the infective third-stage larvae (iL3s) and 196 proteins from the parasitic females of S. venezuelensis. The proteins that were secreted by the iL3s were enriched with peptidase activity, embryo development and the oxidation-reduction process, while those of the parasitic females were associated with glycolysis, DNA binding (histones) and other unknown functions. Trypsin inhibitor-like domain-containing proteins were identified as the main component of the adhesive secretion from parasitic females. An absence of secretion signals in many of the proteins indicated that they are secreted via non-classical secretion pathways.ConclusionsWe found that S. venezuelensis secretes a wide range of proteins to establish parasitism. This includes proteins that have previously been identified as being involved in parasitism in other helminths as well as proteins that are unique to this species. These findings provide insights into the molecular mechanisms underlying Strongyloides parasitism.Electronic supplementary materialThe online version of this article (10.1186/s13071-018-3266-x) contains supplementary material, which is available to authorized users.
Soil-transmitted helminths (STHs) are medically important parasites that infect 1. 5 billion humans globally, causing a substantial disease burden. These parasites infect the gastrointestinal tract (GIT) of their host where they co-exist and interact with the host gut bacterial flora, leading to the coevolution of the parasites, microbiota, and host organisms. However, little is known about how these interactions change through time with the progression of infection. Strongyloidiasis is a human parasitic disease caused by the nematode Strongyloides stercoralis infecting 30–100 million people. In this study, we used a closely related rodent parasite Strongyloides venezuelensis and mice as a model of gastrointestinal parasite infection. We conducted a time-course experiment to examine changes in the fecal microbiota from the start of infection to parasite clearance. We found that bacterial taxa in the host intestinal microbiota changed significantly as the infection progressed, with an increase in the genera Bacteroides and Candidatus Arthromitus, and a decrease in Prevotella and Rikenellaceae . However, the microbiota recovered to the pre-infective state after parasite clearance from the host, suggesting that these perturbations are reversible. Microarray analysis revealed that this microbiota transition is likely to correspond with the host immune response. These findings give us an insight into the dynamics of parasite-microbiota interactions in the host gut during parasite infection.
BackgroundNematodes belonging to the genus Steinernema are insect parasites and are used as effective biological agents against soil-dwelling insect pests. Although the full nuclear genomes of multiple Steinernema species have become available recently, mitochondrial genome information for the genus is limited. In this study, we sequenced the complete mitochondrial genomes of four species of Steinernema and analysed their structure, codon usage and phylogenetic relationships.ResultsMitochondrial genomes of Steinernema carpocapsae, S. glaseri, S. kushidai and S. litorale comprised 13,924, 13,851, 15,182 and 21,403 bp, respectively, with highly AT-rich nucleotide contents (AT ratio of 71.05–76.76 %). All the expected genes, including 12 protein-coding genes (encoding ATP6, CYTB, COX1-3, ND1-6 and ND4L), two rRNA genes and 22 tRNA genes were identified in the four genomes. Phylogenetic analyses based on the amino acid sequences of the 12 protein-coding genes identified the Steinernema species as monophyletic, representing a sister clade of Rhabditina and Ascaridida. In addition, they were more closely positioned to other Clade 10 nematodes, including Bursaphelenchus xylophilus, Aphelenchoides besseyi and Panagrellus redivivus, than to Strongyloides species. Gene arrangements and codon usage analyses supported this relationship. Mitochondrial genome comparison of two distinct strains of S. carpocapsae detected high intra-specific diversity.ConclusionsThe mitochondrial genomes of four species of Steinernema determined in this study revealed inter- and intra-species divergences/diversities of mitochondrial genomes in this genus. This information provides useful insights into the phylogenetic position of the genus Steinernema within the Nematoda and represents a useful resource for selecting molecular markers for diagnosis and population studies. These data will increase our understanding of the interesting biology of insect parasites.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-016-1730-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.