IntroductionMore and more findings have demonstrated that right-sided colon cancers (RCC) and left-sided colon cancers (LCC) are distinct clinical and biological entities and suggest that they should be treated as different diseases. However, the reasons why RCC and LCC harbor different clinical and biological features remain unclear.Materials and methodsTo identify the genomic expression differences between RCC and LCC and uncover the mechanisms underlying these differences, we chose the gene expression profiles of GSE14333 from the Gene Expression Omnibus (GEO) database as an object of study. Then, a systematic and integrative bioinformatics analysis was performed to research the possible mechanism of the differentially expressed (DE) genes from the Gene Expression Omnibus dataset including gene ontology (GO) analysis, pathway enrichment analysis, protein–protein interaction (PPI) network construction, and module analysis. Totally, we extracted 3,793 DE genes from samples of colon cancer including 1,961 genes upregulated in RCC and 1,832 genes upregulated in LCC from the selected dataset.ResultsThe results of GO and pathway enrichment analysis indicated that RCC and LCC could predispose to different pathways regulated by different genes. Based on the PPI network, PCNA, TP53, HSP90AA1, CSNK2A1, UBB, LRRK2, ABL1, PRKACA, CAV1, and JUN were identified as the key hub genes. Also, significant modules were screened from the PPI network.ConclusionIn conclusion, the present study indicated that the identified genes and pathways may promote new insights into the underlying molecular mechanisms contributing to the difference between RCC and LCC and might be used as specific therapeutic targets and prognostic markers for the personalized treatment of RCC and LCC.
The color of rapeseed (Brassica napus L.) petal is usually yellow but can be milky-white to orange or pink. Thus, the petal color is a popular target in rapeseed breeding programs. In his study, metabolites and RNA were extracted from the yellow (Y), yellow/purple (YP), light purple (LP), and purple (P) rapeseed petals. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), RNA-Seq, and quantitative real-time (qRT-PCR) analyses were performed to analyze the expression correlation of differential metabolites and differential genes. A total of 223 metabolites were identified in the petals of the three purple and yellow rapeseed varieties by UPLC-MS/MS. A total of 20511 differentially expressed genes (DEGs) between P, LP, YP, versus Y plant petals were detected. This study focused on the co-regulation of 4898 differential genes in the three comparison groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation and quantitative RT-PCR analysis showed that the expression of BnaA10g23330D (BnF3H) affects the synthesis of downstream peonidin and delphinidin and is a key gene regulating the purple color of petals in B. napus. L. The gene may play a key role in regulating rapeseed flower color; however, further studies are needed to verify this. These results deepen our understanding of the molecular mechanisms underlying petal color and provide the theoretical and practical basis for flower breeding targeting petal color.
To scientifically evaluate and utilize high-oleic acid rape germplasm resources and cultivate new varieties suitable for planting in the Hunan Province, 30 local high-oleic acid rape germplasms from Hunan were used as materials. The 12 personality indices of quality, yield, and resistance were comprehensively evaluated by variability, correlation, principal component, and cluster analyses. The results of variability showed that except for oleic acid, the lowest coefficient of variation was oil content, which was 0.06. Correlation analysis showed that oil content was positively correlated with main traits such as yield per plant and oleic acid, which could be used in the early screening of high-oleic rape germplasm. The results of principal component analysis showed that the 12 personality indicators were integrated into four principal components, and the cumulative contribution rate was 62.487%. The value of comprehensive coefficient ‘F’ was positively correlated with the first, second, and fourth principal components and negatively correlated with the third principal component. Cluster analysis showed that 30 high-oleic rape germplasms could be divided into four categories consisting of 9 (30%), 6 (20%), 7 (23%), and 8 (27%) high-oleic rape germplasms, each with the characteristics of "high disease resistance", "high yield", "high protein", and "more stability". This study not only provides a reference basis for high-oleic rape breeding but also provides a theoretical basis for their early screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.