The effect of feature sizes on the characteristics of lateral spintronic devices have been investigated experimentally and theoretically. It is demonstrated that confining spin-transport in the active region of a device enhances magnitude of the spin-dependent response substantially. Numerical simulation of spin-transport corroborates the experimental observations. Device characteristics are found to be a strong function of spin-polarizer and analyzer dimensions. The response is observed to attain a peak value for an optimum device feature size, and this is seen to be a function of temperature. Spin dependent effects become weaker for very small and very large devices.
In this paper, ferromagnetic Schottky contacts for GaN based spin injection are being studied. The electrical characterization of this Co/n-GaN and Fe/n-GaN Schottky contacts showing the zero-bias barrier height comes closer to unity as the temperature is increased. Also, the Richardson constant is extracted for this Schottky contact. Both the zero-bias barrier height and the Richardson constant are verified both experimentally as well as theoretically. Thus, this Schottky contacts will serve as spin injector for GaN based spin devices specifically for GaCrN based devices
We report room temperature ferromagnetism in crystalline GaCrN prepared by Cr deposition and drive-in diffusion with Curie temperature much above 300 K. The Curie temperature increases with increasing active Cr concentration. Cr doped GaN acts as an n-type material with significant increase in electron carrier concentration due to the presence of Cr. Optical property of GaCrN is found to be very similar to GaN with an additional peak at 3.29 eV due to Cr. The hysteresis measurements show that the ferromagnetic ordering is maintained up to 300 K with no significant change in saturation magnetization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.