Biochar application to agricultural land is gaining significance as a strategy for C sequestration and improving
A research study was established at the research farm of the University of Agriculture, Peshawar during winter 2018–2019. Commercial biochars were given to the experimental site from 2014 to summer 2018 and received 0.95, 130 and 60 tons ha−1 of biochar by various treatments viz., (Biochar1) BC1, (Biochar2) BC2, (Biochar3) BC3 and (Biochar4) BC4, respectively. This piece of work was conducted within the same study to find the long-term influence of biochar on the fertility of the soil, fixation of N2, as well as the yie1d of chickpea under a mung–chickpea cropping system. A split plot arrangement was carried out by RCBD (Randomized Complete Block Design) to evaluate the study. Twenty-five kilograms of N ha−1 were given as a starter dosage to every plot. Phosphorous and potassium were applied at two levels (half (45:30 kg ha−1) and full (90:60 kg ha−1) recommended doses) to each of the four biochar treatments. The chickpea crop parameters measured were the numbers and masses of the nodules, N2 fixation and grain yield. Soil parameters recorded were Soil Organic Matter (SOM), total N and mineral N. The aforementioned soil parameters were recorded after harvesting. The results showed that nodulation in chickpea, grain yield and nutrient uptake were significantly enhanced by phosphorous and potassium mineral fertilizers. The application of biochar 95 tons ha−1 significantly enhanced number of nodules i-e (122), however statistically similar response in terms of nodules number was also noted with treatment of 130 tons ha−1. The results further revealed a significant difference in terms of organic matter (OM) (%) between the half and full mineral fertilizer treatments. With the application of 130 tons ha−1 of biochar, the OM enhanced from 1.67% in the control treatment, to 2.59%. However, total and mineral nitrogen were not statistically enhanced by the mineral fertilizer treatment. With regard to biochar treatments, total and mineral N enhanced when compared with the control treatment. The highest total N of 0.082% and mineral nitrogen of 73 mg kg−1 in the soil were recorded at 130 tons ha−1 of biochar, while the lowest total N (0.049%) and mineral nitrogen (54 mg kg−1) in the soil were recorded in the control treatment. The collaborative influence of mineral fertilizers and biochars was found to be generally non-significant for most of the soil and plant parameters. It could be concluded that the aforementioned parameters were greater for treatments receiving biochar at 95 tons or more per hectare over the last several years, and that the combination of lower doses of mineral fertilizers further improved the performance of biochar.
A field experiment was conducted to examine the residual influence of biochar applied previously to an established experiment at the Agriculture University Research Farm, Peshawar on soil properties and yield of maize crop during summer 2016. The experiment was established in RCB design with split plot arrangements having cropping systems (CS) in main plots and biochar (BC) in sub-plots. Cropping systems were: 1) wheat-mung bean; 2) wheat-maize; 3) chickpea-maize; and 4) chickpea-mung bean. During the past three seasons, each cropping system received biochar at 0, 40, 60 and 80 t•ha −1 along with recommended dose of NPK in each season. For this study, maize was planted after chickpea and wheat in summer 2016. The results showed that grain yield, cobs weight and total N uptake of maize was significantly greater for chickpea-maize than for wheat-maize cropping system. Soil organic C was also significantly higher in soil under chickpea-maize than under wheat-maize cropping system. However, other yield components such as stover yield, harvest index and N concentration in grain and stover of maize and soil properties such as pH, EC and mineral N were non-significantly affected by cropping systems. With respect to residual effect of biochar grain yield of maize and bulk density of soil were maximum for treatment receiving biochar at 40 t•ha −1 whereas cobs weight soil pH and mineral N were highest receiving biochar at 60 t•ha −1. Moreover, N concentration in stover, N uptake and soil organic C were maximum for treatment receiving biochar at 80 t•ha −1 . However, stover yield, harvest index, N concentration in grain, and soil EC were non-significantly affected by biochar treatments. However interactions between CS × BC were significant for yield and yield parameters of maize and for soil properties (bulk density mineral N), while non-significant for harvest index, soil organic C, pH and EC. It was concluded that chickpea-maize crop-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.