The Global Earthquake Model (GEM) aims to develop uniform, openly available, standards, datasets and tools for worldwide seismic risk assessment through global collaboration, transparent communication and adapting state-of-the-art science. GEM Faulted Earth (GFE) is one of GEM's global hazard module projects. This paper describes GFE's development of a modern neotectonic fault database and a unique graphical interface for the compilation of new fault data. A key design principle is that of an electronic field notebook for capturing observations a geologist would make about a fault. The database is designed to accommodate abundant as well as sparse fault observations. It features two layers, one for capturing neotectonic faults and fold observations, and the other to calculate potential earthquake fault sources from the observations. In order
Macroseismic intensities play a key role in the engineering, seismological, and loss modeling communities. However, at present, there is an increasing demand for instrumental data-based loss estimations that require statistical relationships between intensities and strong-motion data. In New Zealand, there was an urgent need to update the ground motion to intensity conversion equation (GMICE) from 2007, developed prior to a large number of recent earthquakes including the 2010–2011 Canterbury and 2016 Kaikōura earthquake sequences. Two main factors now provide us with the opportunity to update New Zealand’s GMICE: (1) recent publication of New Zealand’s Strong-Motion Database, corresponding to 276 New Zealand earthquakes with magnitudes 3.5–7.8 and 4–185 km depths; and (2) recent generation of a community intensity database from GeoNet’s “Felt Classic” (2004–2016) and “Felt Detailed” (2016–2019) questionnaires, corresponding to around 930,000 individual reports. Ground-motion data types analyzed are peak ground velocity (PGV) and peak ground acceleration (PGA). The intensity database contains 67,572 felt reports from 917 earthquakes, with magnitudes 3.5–8.1, and 1797 recordings from 247 strong-motion stations (SMSs), with hypocentral distances of 5–345 km. Different regression analyses were tested, and the bilinear regression of binned mean strong-motion recordings for 0.5 modified Mercalli intensity bins was selected as the most appropriate. Total least squares regression was chosen for reversibility in the conversions. PGV provided the best-fitting results, with lower standard deviations. The influence of hypocentral distance, earthquake magnitude, and the site effects of local geology, represented by the mean shear-wave velocity in the first 30 m depth, on the residuals was also explored. A regional correction factor for New Zealand, suitable for adjustment of global relationships, has also been estimated.
A vulnerability analysis of some historical and monumental buildings in the city of Málaga is presented in this paper. More than twenty of these monuments were severely damaged or completely destroyed due to the large earthquake (I max = VIII-IX) occurred in the Málaga region in October 1680. The vulnerability index methodology has been used in this paper. This technique is based on statistical data from seismic damage caused to Italian monuments for the past 30 years. For each building, vulnerability curves have been obtained and damage grades have been estimated. A comparison has been carried out between the expected damage grades and the damage observed from past earthquakes, in order to check the feasibility of applying this methodology to Spanish monuments. This comparison has been possible due to the fact that detailed seismic damage information exists for monuments in the city of Málaga that still exist today, which is a very uncommon case in Spain. Results show a good consistency between expected and observed damage, especially for the churches type. Two seismic scenarios have been proposed for the city centre, one deterministic and one probabilistic, where 54 historical and modern buildings have been analyzed. Both scenarios show worrying results, especially for the types of churches, chapels and towers, where expected high probabilities of suffering very heavy damage or even collapse have been obtained. It is highly recommended to take the necessary measures, in the hope of trying to avoid the possible damage that can be expected from future earthquakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.